D、华华和月月逛公园

tarjan算法:跑有向图的强连通分量算法

1、新加节点,直接加新的编号
2、对于来过的节点,最小编号更新为可以这个强连通分量中序最小的值。
3、对于这个题目来说,只需要判断是不是2个强连通分量之间,是不是不同值,如果子节点的序小于自己值,说明这条路是连接2个强连通分量的必经之路,必不能省略。
4、最终答案就是总边数减掉必经的道路

#include <bits/stdc++.h>
#pragma GCC optimize(2)
#pragma GCC optimize(3)
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
typedef long long ll;
const ll MOD = 1e9 + 7;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); }    while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; }
inline void write(ll x) { if (!x) { putchar('0'); return; } char F[200]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';     tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;   while (b) { if (b & 1)  ans *= a;       b >>= 1;      a *= a; }   return ans; }   ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }

const int N = 1e5 + 7; //节点数
const int M = 3e5 + 7; //路径数
const int INF = 0x3f3f3f3f;
int head[N], tot = 0;//前向星变量
struct Node {
    //int u; //起点
    //int w; //权值
    int v, next;
} edge[M << 1];

void add(int u, int v) {
    tot++;
    //edge[tot].u = u;
    edge[tot].v = v;
    //edge[tot].w = w;
    edge[tot].next = head[u];
    head[u] = tot;
}

int n, m, c, dfn[N], low[N], tmp;

void tarjan(int x, int fa) {
    dfn[x] = low[x] = ++c;
    for (int i = head[x]; i; i = edge[i].next) {
        int y = edge[i].v;
        if (!dfn[y]) {
            tarjan(y, x);
            low[x] = min(low[x], low[y]);
            if (low[y] > dfn[x]) ++tmp;
        }
        else if (y != fa)   low[x] = min(low[x], dfn[y]);
    }
}

int main() {
    n = read(), m = read();
    for (int i = 1; i <= m; ++i) {
        int u = read(), v = read();
        add(u, v); add(v, u);
    }
    tarjan(1, 0);
    write(m - tmp);
    return 0;
}

E、数字比较

我竟然会用快速幂……究竟是有多思想固化了,模板敲多了,思维没跟上。
这个题目直接把左右取个对数,再移个项,除一下过来,就可以得到一个的式子比较这两个式子大小即可出结果。

#include <bits/stdc++.h>
#pragma GCC optimize(2)
#pragma GCC optimize(3)
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
typedef long long ll;
const ll MOD = 1e9 + 7;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); }    while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();    return s * w; }
inline void write(ll x) { if (!x) { putchar('0'); return; } char F[200]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }

const double eps = 1e-7;

int main() {
    js;
    double a, b;
    cin >> a >> b;
    double ans1 = log(a) / log(b), ans2 = a / b;
    if (fabs(ans1 - ans2) < eps)    cout << "=";
    else if (ans1 > ans2)    cout << ">";
    else cout << "<";
    return 0;
}