题目链接:http://codeforces.com/contest/451/problem/E
题意:有n个盒子,然后每个盒子有f[i]个,你需要拿出来s个球,问你一共有多少种选择。
解法:2^ n的状态,枚举说那些花坛的花取超过了,剩下的用C(n−1,sum+n−1)隔板法计算个数,注意奇数的位置要用减的,偶数的位置用加的,容斥原理。

//CF 451E

#include <bits/stdc++.h>
using namespace std;

const long long mod = 1e9+7;

long long qmod(long long a, long long n)
{
    long long res = 1;
    while(n){
        if(n&1) res = res*a%mod;
        a = a*a%mod;
        n >>= 1;
    }
    return res;
}

long long C(long long a, long long b)
{
    if(a < b) return 0;
    if(b > a - b) b = a - b;
    long long up = 1, down = 1;
    for(long long i = 0; i < b; i++){
        up = up*(a-i)%mod;
        down = down*(i+1)%mod;
    }
    return up*qmod(down, mod-2)%mod;
}

long long lucas(long long a, long long b){
    if(b == 0) return 1;
    return C(a%mod, b%mod)*lucas(a/mod, b/mod)%mod;
}

long long s, f[25];
int n;

long long gao()
{
    long long ans = 0;
    for(int i = 0; i < (1<<n); i++){
        long long sgn = 1, sum = s;
        for(int j = 0; j < n; j++){
            if(i&(1<<j)){
                sum -= f[j]+1;
                sgn*=-1;
            }
        }
        if(sum < 0) continue;
        ans += sgn*lucas(sum+n-1, n-1)%mod;
        ans%=mod;
    }
    return (ans+mod)%mod;
}

int main()
{
    scanf("%d%lld", &n, &s);
    for(int i = 0; i < n; i++) scanf("%lld", &f[i]);
    printf("%lld\n", gao());
    return 0;
}