matrixquickpow
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int MOD = 1e9+7; typedef long long ll; struct Node{ ll a[2][2]; }; Node mul(Node a, Node b){ Node ans; for(int i=0; i<2; ++i){ for(int j=0; j<2; ++j){ ans.a[i][j]=0; for(int k=0; k<2; ++k) ans.a[i][j]=(ans.a[i][j]+a.a[i][k]*b.a[k][j]%MOD)%MOD; } } return ans; } Node qpow(Node a,ll b){ Node ans; for(int i=0; i<2; ++i) for(int j=0; j<2; ++j) ans.a[i][j]=(i==j); while(b){ if(b&1) ans=mul(ans,a); b>>=1; a=mul(a,a); } return ans; } int main (){ ll n; scanf("%lld",&n); Node base; int c[2][2]={1,1,1,0}; for(int i=0; i<2; ++i) for(int j=0; j<2; ++j) base.a[i][j]=c[i][j]; Node ans=qpow(base,n); printf("%lld\n",(ans.a[1][0]*ans.a[0][0])%MOD); return 0; }
dujiaoBM
#include<bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize(3) using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define pb push_back typedef long long ll; #define SZ(x) ((ll)(x).size()) typedef vector<ll> VI; typedef pair<ll, ll> PII; const ll mod = 1000000007; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1)res = res * a % mod; a = a * a % mod; }return res; } // head ll _, n; namespace linear_seq { const ll N = 10010; ll res[N], base[N], _c[N], _md[N]; vector<ll> Md; void mul(ll* a, ll* b, ll k) { rep(i, 0, k + k) _c[i] = 0; rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod; for (ll i = k + k - 1; i >= k; i--) if (_c[i]) rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod; rep(i, 0, k) a[i] = _c[i]; } ll solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans = 0, pnt = 0; ll k = SZ(a); assert(SZ(a) == SZ(b)); rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1; Md.clear(); rep(i, 0, k) if (_md[i] != 0) Md.push_back(i); rep(i, 0, k) res[i] = base[i] = 0; res[0] = 1; while ((1ll << pnt) <= n) pnt++; for (ll p = pnt; p >= 0; p--) { mul(res, res, k); if ((n >> p) & 1) { for (ll i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0; rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod; } } rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod; if (ans < 0) ans += mod; return ans; } VI BM(VI s) { VI C(1, 1), B(1, 1); ll L = 0, m = 1, b = 1; rep(n, 0, SZ(s)) { ll d = 0; rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod; if (d == 0) ++m; else if (2 * L <= n) { VI T = C; ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; L = n + 1 - L; B = T; b = d; m = 1; } else { ll c = mod - d * powmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; ++m; } } return C; } ll gao(VI a, ll n) { VI c = BM(a); c.erase(c.begin()); rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod; return solve(n, c, VI(a.begin(), a.begin() + SZ(c))); } }; int main() { //while (~scanf("%lld", &n)) { ll n; scanf("%lld", &n); vector<ll>v; ll a=1,b=1,c; v.push_back(1);//前几项 v.push_back(1); for(int i=3;i<=100;++i) c=(a+b)%mod,a=b,b=c,v.push_back(c); //输入n ,输出第n项的值 一般大于10项即可出答案,越多越好 printf("%d\n", linear_seq::gao(v, n - 1) * linear_seq::gao(v, n) % mod); //} }