题意:给了n个数,让球gcd{ lcm{a[i],a[j]} } (i<j)
就是n个数,两两配对求出他们的lcm,对于所有lcm在求出gcd
思路:考虑一下gcd和lcm在算术基本定理下的含义。
那么容易知道
那么对于两两组合求lcm,我们容易知道取的质因数是最大的那个,然后整体求gcd质因数取的是最小的。
那么考虑一下。如果对于n个数而言,有n-1个数都含有质因数x,那么最后的所求答案的gcd一定有质因数x,为什么?
因为只存在一个数字没有质因子x,那么因为lcm是取最大的,所以别的数都有,配对时候可以把他拉上来,也就是求出来的lcm是有的。
那么容易知道对于质因数x,n个数内,如果含有质因子x的个数<n-1个,那么lcm必有两个是无法含有x因子的,那么gcd取得是最小,所以对答案没有贡献。
那么还有一种呢? 就是n个数都含有质因子x,考虑一下前面所说得,lcm取得是最大,对于最小的那个,一定会被拉到和含有x因子个数第二小一样,整体gcd取最小,那么自然是含有x因子个数第二个小的那个。
那么做法就很清楚了。
把每个数的每个质因子个数都求出来。
如果有n-1个数含有质因子x,那么答案就乘上x^k[x][0],k[x]数组为还有x因子的个数,k[x][0]是含有个数最少的。
如果有n个数含有质因子x,那么答案就乘上x^k[x][1],k[x]数组为还有x因子的个数,k[x][1]是含有个数第二少的。
其实本质都是乘x^k[x][1],这里你可以会问,那为什么如果有n-1个数含有质因子x,我的幂是k[x][0]而不是k[x][1]
这个看个人写法,我的写法是不含有x因子的,也就是含有个数是0个,就没丢到数组内,其实丢进去那一个不含有的,也就是含有个数为0,那么就统一了幂是第二小。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n;
ll a[2000005],c[2000005];
vector<int> k[2000005];
ll qpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1) ans=a*ans;
b>>=1;
a=a*a;
}
return ans;
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
int x=a[i];
for(int j=2;j*j<=x;j++){
if(x%j==0){
c[j]++;
int num=0;
while(x%j==0) x/=j,num++;
k[j].push_back(num);
}
}
if(x!=1){
c[x]++;
k[x].push_back(1);
}
}
///k[i][j]数组表示质因子为i的第j个的个数
for(int i=1;i<=200000;i++) sort(k[i].begin(),k[i].end());
ll qq=1;
for(int i=1;i<=200000;i++){
if(c[i]>=n-1){
if(c[i]==n-1) qq*=qpow(i,k[i][0]);
else qq*=qpow(i,k[i][1]);
}
}
cout<<qq;
return 0;
}