import numpy as np def calculate_covariance_matrix(vectors): n_features, n_obser = len(vectors), len(vectors[0]) covar_matrix = [[0]*n_features for _ in range(n_features)] mus = [sum(vector)/n_obser for vector in vectors] for i in range(n_features): vectors[i] = [v-mus[i] for v in vectors[i]] for i in range(n_features): for j in range(n_features): covar_matrix[i][j] = sum(v*u for v, u in zip(vectors[i], vectors[j]))/(n_obser-1) return covar_matrix # 主程序 if __name__ == "__main__": # 输入 ndarrayA = input() # 处理输入 import ast A = ast.literal_eval(ndarrayA) # 调用函数计算 output = calculate_covariance_matrix(A) # 输出结果 print(output)