D 数列统计
题目地址:
基本思路:
(以下是不正经解法QAQ,正经解法可以看其他巨巨)
这题本来想正经的推一下式子的,结果组合数学太差了没想出来,所以就打表找规律了。
我们先附上打表用:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
#define IO std::ios::sync_with_stdio(false)
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define per(i, l, r) for (int i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define INF (int)1e18
inline int read() {
int x = 0, neg = 1; char op = getchar();
while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
return neg * x;
}
inline void print(int x) {
if (x < 0) { putchar('-'); x = -x; }
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
const int mod = 911451407;
int l,x,ans = 0;
void dfs(int nxt,int step){
if(step == l - 1){
ans++;
return;
}
for(int i = nxt ; i <= x ; i++){
dfs(i,step + 1);
}
}
signed main() {
IO;
int T;
cin >> T;
while (T--){
cin >> l >> x;
cout << "l: " << l << " x: " << x << " ";
if(l == 1){
puts("1");
continue;
}
ans = 0;
dfs(1,0);
cout << ans <<'\n';
}
return 0;
}然后我们固定一个量不变,比如我们设定l为3,那么能得到以下结果:
l: 3 x: 1 1 l: 3 x: 2 3 l: 3 x: 3 6 l: 3 x: 4 10 l: 3 x: 5 15 l: 3 x: 6 21 l: 3 x: 7 28 l: 3 x: 8 36 l: 3 x: 9 45
然后如果我们对组合数比较了解,那么其实我们能看出来这是的结果,而
应该是等于
,然后再带几个数字我们大概就能发现最终答案应该是
,最后我们稍微对拍一下就能发现这个是对的。
参考代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
#define IO std::ios::sync_with_stdio(false)
#define ll long long
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define per(i, l, r) for (int i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define INF (int)1e18
inline int read() {
int x = 0, neg = 1; char op = getchar();
while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
return neg * x;
}
inline void print(ll x) {
if (x < 0) { putchar('-'); x = -x; }
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
ll mod = 911451407;
const int maxn = 2000050;
ll qpow(ll a,ll x) {
ll ret = 1;
while (x) {
if (x & 1)
ret = ret * a % mod;
a = a * a % mod;
x >>= 1;
}
return ret;
}
ll fac[maxn],inv[maxn];
ll init() {
fac[0] = 1;
for (int i = 1; i < maxn; i++)
fac[i] = fac[i - 1] * i % mod;
inv[maxn - 1] = qpow(fac[maxn - 1], mod - 2);
for (int i = maxn - 2; i >= 0; i--)
inv[i] = inv[i + 1] * (i + 1) % mod;
return 0;
}
ll c(ll n,ll m) {
if (n < m) return 0;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
}
signed main() {
IO;
init();
int T;
T = read();
while (T--){
int l = read(),x = read();
if(l == 1 || x == 1){
puts("1");
continue;
}
l--; x--;
ll ans = c(l + x,l);
print(ans % mod);
puts("");
}
return 0;
}
京公网安备 11010502036488号