解一个像 y + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x)这样的
p ( x ) , q ( x ) p , q p(x),q(x)一下简写成p,q p(x),q(x)p,q

变量替换法:

y = u v 令y=uv y=uv
y = u v + u v y'=u'v+uv' y=uv+uv
u v + u v + p u v = q u'v+uv'+puv=q uv+uv+puv=q
u v + u u'v+u uv+u ( v + p v ) (v'+pv) (v+pv) = q =q =q
要是红色的这一项是0就好啦~
那我们就让他等于0吧(๑๑)

v + p v = 0 v'+pv=0 v+pv=0

v v \frac{v'}{v} vv=–p

v v \int\frac{v'}{v} vvdx= \int –pdx

l n <mtext>   </mtext> v = p d x ln\ v=\int--pdx ln v=pdx

v = C 1 e p d x v=C_1e^{\int-pdx} v=C1epdx

, v 所以,当v等于这么多时,那一坨就没了 ,v

u v = q 这时只需要求 u&#x27;v=q 了 uv=q

u = q v u&#x27;=\frac{q}{v} u=vq

u d x = q v d x \int u&#x27;dx=\int\frac{q}{v}dx udx=vqdx

u = q v d x + C 2 u=\int\frac{q}{v}dx+C_2 u=vqdx+C2

= q C 1 e p d x d x + C 2 =\int\frac{q}{C_1e^{\int-pdx}}dx+C_2 =C1epdxqdx+C2

u v 这样u和v就都求出来了 uv

y = u v 所以y就=uv y=uv
= ( q C 1 e p d x d x + C 2 ) C 1 e p d x =(\int\frac{q}{C_1e^{\int-pdx}}dx+C_2)C_1e^{\int-pdx} =(C1epdxqdx+C2)C1epdx

= ( q C 1 e p d x d x + C ) e p d x =(\int\frac{q}{C_1e^{\int-pdx}}dx+C)e^{\int-pdx} =(C1epdxqdx+C)epdx

这种叫做变量替换法

常数变易法:

q = 0 y 当q=0的时候,y就好求 q=0y

y = C e p d x y=Ce^{\int-pdx} y=Cepdx

q 0 C u 但q不等于0,所以那个常数C肯定不会是常数,就让他变成u吧 q0Cu

y = u e p d x y=ue^{\int-pdx} y=uepdx

u 然后再带入原方程把u反解出来: u

u = q e p d x + C u=\int\frac{q}{e^{\int-pdx}}+C u=epdxq+C

所以

y = ( q C 1 e p d x d x + C ) e p d x y=(\int\frac{q}{C_1e^{\int-pdx}}dx+C)e^{\int-pdx} y=(C1epdxqdx+C)epdx