MapReduce 入门
1.1 MapReduce 定义
Mapreduce 是一个分布式运算程序的编程框架,是用户开发“基于 hadoop 的数据分析
应用”的核心框架。
Mapreduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的
分布式运算程序,并发运行在一个 hadoop 集群上
1.2 MapReduce 优缺点
1.2.1 优点
1)MapReduce 易于编程。它简单的实现一些接口,就可以完成一个分布式程序,这个
分布式程序可以分布到大量廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一
个简单的串行程序是一模一样的。就是因为这个特点使得 MapReduce 编程变得非常流行。
2)良好的扩展性。当你的计算资源不能得到满足的时候,你可以通过简单的增加机器
来扩展它的计算能力。
3)高容错性。MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就
要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一
个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由
Hadoop 内部完成的。
4)适合 PB 级以上海量数据的离线处理。这里加红字体离线处理,说明它适合离线处
理而不适合在线处理。比如像毫秒级别的返回一个结果,MapReduce 很难做到。
1.2.2 缺点
MapReduce 不擅长做实时计算、流式计算、DAG(有向图)计算。
1)实时计算。MapReduce 无法像 Mysql 一样,在毫秒或者秒级内返回结果。
2)流式计算。流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,
不能动态变化。这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。
3)DAG(有向图)计算。多个应用程序存在依赖关系,后一个应用程序的输入为前一
个的输出。在这种情况下,MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,会造成大量的磁盘 IO,导致性能非常的低下。