题意
给出一张无向图,求出恰巧经过n条边的最短路。
题解
考虑先离散化,那么点的个数只会有202个最多。于是复杂度里面就可以有一个\(n^3\).考虑构造矩阵\(d^1\)表示经过一条边的最短路,那么就会是输入进来的边。那么\(d^k\)表示经过k条边的最短路,则有\(d^k[i][j] = min\{d^k[i][j], d^r[i][k] + d^{k-r}[k][j]\}\)
这玩意其实就是个矩阵乘法的拓展,可以说是广义上的矩阵乘法。
然后就可以处理出2^x次方的所有矩阵,然后\(n^3logn\)得到最终矩阵的答案了。这个算法叫做倍增floyd。
#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
#define inf 0x3f3f3f3f
#define il inline
namespace io {
#define in(a) a = read()
#define out(a) write(a)
#define outn(a) out(a), putchar('\n')
#define I_int ll
inline I_int read() {
I_int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
char F[200];
inline void write(I_int x) {
if (x == 0) return (void) (putchar('0'));
I_int tmp = x > 0 ? x : -x;
if (x < 0) putchar('-');
int cnt = 0;
while (tmp > 0) {
F[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while (cnt > 0) putchar(F[--cnt]);
}
#undef I_int
}
using namespace io;
using namespace std;
#define N 210
int k,m,s,e;
int x[10*N], y[10*N], v[10*N], a[10*N], lim;
struct mat {
int m[N][N];
mat() { memset(m, 0x3f, sizeof(m)); }
mat operator * (const mat x) const {
mat c;
for(int k = 1; k <= lim; ++k) {
for(int i = 1; i <= lim; ++i) {
for(int j = 1; j <= lim; ++j) {
c.m[i][j] = min(c.m[i][j], m[i][k] + x.m[k][j]);
}
}
}
return c;
}
}d[30];
int vis[N*50];
int main() {
in(k);in(m);in(s);in(e); int tot = 0;
a[++tot] = s; a[++tot] = e;
for(int i = 1; i <= m; ++i) {
in(v[i]), in(x[i]), in(y[i]);
a[++tot] = x[i]; a[++tot] = y[i];
}
sort(a+1,a+tot+1);
for(int i = 1; i <= tot; ++i)
if(a[i] != a[i - 1]) vis[a[i]] = ++lim;
s = vis[s]; e = vis[e];
for(int i = 1; i <= m; ++i) {
x[i] = vis[x[i]]; y[i] = vis[y[i]];
d[0].m[x[i]][y[i]] = d[0].m[y[i]][x[i]] = v[i];
}
for(int i = 1; (1 << i) <= k; ++i) d[i] = d[i - 1] * d[i - 1];
mat ans;
for(int i = 1; i <= lim; ++i) ans.m[i][i] = 0;
for(int i = 0; (1 << i) <= k; ++i) if((k>>i)&1) ans = ans * d[i];
outn(ans.m[s][e]);
}