Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 187893 Accepted Submission(s): 46820
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
Author
CHEN, Shunbao
Source
【分析】:
【代码】:
矩阵快速幂
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int MOD = 7; typedef vector<LL> vec; typedef vector<vec> mat; LL n; mat mul(mat &A,mat &B) { mat C(A.size(),vec(B[0].size())); for( int i = 0; i < A.size(); i++ ){ for( int j = 0; j < B[0].size();j++ ){ for( int k = 0; k < B.size();k++ ){ C[i][j] = (C[i][j] + A[i][k] * B[k][j]); C[i][j] %= MOD; } } } return C; } mat pow(mat A,LL n) { mat B(A.size(),vec(A.size())); for( int i = 0; i < A.size(); i++ ){ B[i][i] = 1; } while(n > 0){ if(n & 1)B = mul(B,A); A = mul(A,A); n >>= 1; } return B; } void solve(LL a,LL b) { mat A(2,vec(2)); A[0][0] = a; A[0][1] = b; A[1][0] = 1; A[1][1] = 0; A = pow(A,n-2); printf("%lld\n",(A[0][0]+A[0][1])%7); } int main() { LL a,b; while(~scanf("%lld%lld%lld",&a,&b,&n),a) solve(a,b); return 0; }