1、时间复杂度 
(1)时间频度
 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

(3)求解算法的时间复杂度的具体步骤

  1. 找出算法中的基本语句;
  2. 计算基本语句的执行次数的数量级;
  3. 用大Ο记号表示算法的时间性能。

(4) 举一个例子

  1. for (i=1; i<=n; i++)  
           x++;  
    for (i=1; i<=n; i++)  
         for (j=1; j<=n; j++)  
              x++;  

    第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

  2. 5)下面分别对几个常见的时间复杂度进行示例说明:

    (1)、O(1)

           

     Temp=i; i=j; j=temp;    

                    

    以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

  3. (2)、O(n2)

    2.1. 交换i和j的内容

    sum=0;                 (一次)  
    for(i=1;i<=n;i++)     (n+1次)  
       for(j=1;j<=n;j++) (n2次)  
        sum++;            (n2次)  

     

  4. 解:因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);

    for (i=1;i<n;i++)  
     {   
         y=y+1;         ①     
         for (j=0;j<=(2*n);j++)      
            x++;         ②        
     }       
         
  5. 解: 语句1的频度是n-1
              语句2的频度是(n-1)*(2n+1)=2n2-n-1
              f(n)=2n2-n-1+(n-1)=2n2-2;

            又Θ(2n2-2)=n2
              该程序的时间复杂度T(n)=O(n2).  

      一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。     

    (3)、O(n)                                                             

    a=0;  
      b=1;                      ①  
      for (i=1;i<=n;i++) ②  
      {    
         s=a+b;    ③  
         b=a;     ④    
         a=s;     ⑤  
      }  

     

  6. 解: 语句1的频度:2,        
               语句2的频度: n,        
              语句3的频度: n-1,        
              语句4的频度:n-1,    
              语句5的频度:n-1,                                  
              T(n)=2+n+3(n-1)=4n-1=O(n).
    (4)、O(log2n)

     

     

    i=1;     ①  
    while (i<=n)  
      i=i*2; ②  

     

  7. 解: 语句1的频度是1,  
              设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
              取最大值f(n)=log2n,
              T(n)=O(log2n )

    (5)、O(n3) 

     

     

    for(i=0;i<n;i++)  
       {    
          for(j=0;j<i;j++)    
          {  
             for(k=0;k<j;k++)  
                x=x+2;    
          }  
       }  

     

  8. 解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n3).

    (5)常用的算法的时间复杂度和空间复杂度

    一个经验规则:其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n ,那么这个算法时间效率比较高 ,如果是2n ,3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

           算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。

    2、算法的空间复杂度

            类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。
    空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地\"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

     

    【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

    x=91; y=100;
    while(y>0) if(x>100) {x=x-10;y--;} else x++;
    解答: T(n)=O(1),
    这个程序看起来有点吓人,总共循环运行了1100次,但是我们看到n没有?
    没。这段程序的运行是和n无关的,
    就算它再循环一万年,我们也不管他,只是一个常数阶的函数

     

    【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。 

    x=1; 
    
    for(i=1;i<=n;i++) 
    
            for(j=1;j<=i;j++)
    
               for(k=1;k<=j;k++)
    
                   x++;   

    该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:  则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

     

    【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

    在数值A[0..n-1]中查找给定值K的算法大致如下:   

    i=n-1;            
    
    while(i>=0&&(A[i]!=k))       
    
          i--;        
    
    return i;        

    此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

    (5)时间复杂度评价性能 

    有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。附上一篇好的博文:https://www.cnblogs.com/zknublx/p/5885840.html