import java.util.*;
public class Main {
// 自定义一个比较器,实现将所有的兄弟单词按照字典序进行排列
public static class ComparaString implements Comparator<String> {
@Override
public int compare(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int p1 = 0;
int p2 = 0;
while (p1 < len1 && p2 < len2) {
if (str1.charAt(p1) < str2.charAt(p2)) {
return -1;
} else if (str1.charAt(p1) > str2.charAt(p2)) {
return 1;
} else {
p1++;
p2++;
}
}
if (len1 < len2) {
return -1;
} else if (len1 > len2) {
return 1;
} else {
return 0;
}
}
}
// 整个程序的入口函数
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
String originalStr = scan.nextLine();
String[] strs = originalStr.split(" ");
int n = Integer.valueOf(strs[0]); // n -> 字典中单词的个数
int k = Integer.valueOf(strs[strs.length - 1]); // k -> 按字典序排列后的第 k 个单词是什么
String x = strs[strs.length - 2]; // 需要查找的单词
ArrayList<String> brothers = new ArrayList<>(); // 定义一个一维数组,用于存放 x 的兄弟单词
for (int i = 0; i < n; i++) {
if (isBrother(strs[i + 1], x)) { // 如果是兄弟单词
brothers.add(strs[i + 1]);
}
}
System.out.println(brothers.size());
if (brothers.size() < k) {
return;
}
brothers.sort(new ComparaString());
System.out.println(brothers.get(k - 1));
// String[] strBrothers = new String[brothers.size()];
// for (int i = 0; i < brothers.size(); i++) {
// strBrothers[i] = brothers.get(i);
// }
// System.out.println(heapSort(strBrothers, k));
}
// 自定义一个函数,用来判断两个字符串是否是兄弟单词
public static boolean isBrother(String str1, String str2) {
if (str1.equals(str2)) {
return false;
}
int len1 = str1.length();
int len2 = str2.length();
if (len1 != len2) {
return false;
}
str1 = process(str1);
str2 = process(str2);
return str1.equals(str2);
}
// 自定义一个函数,实现将传进来的字符串中的字符按照字典序进行排序
public static String process(String str) {
char[] chrs = str.toCharArray();
quickSort(chrs);
StringBuffer sb = new StringBuffer("");
for (char chr : chrs) {
sb.append(chr);
}
return new String(sb);
}
// 自定义一个函数,实现快速排序
public static void quickSort(char[] chrs) {
if (null == chrs || chrs.length < 2) {
return;
}
sort(chrs, 0, chrs.length - 1);
}
// 快速排序的主函数
public static void sort(char[] chrs, int start, int end) {
if (start >= end) {
return;
}
int l = start - 1;
int r = end + 1;
int p = start;
char tmp = chrs[end];
while (p < r) {
if (chrs[p] < tmp) {
swap(chrs, p++, ++l);
} else if (chrs[p] > tmp) {
swap(chrs, p, --r);
} else {
p++;
}
}
sort(chrs, start, l);
sort(chrs, r, end);
}
// 自定义一个函数,实现数组中的某两个位置上的元素进行交换
public static void swap(char[] chrs, int p1, int p2) {
char tmp = chrs[p1];
chrs[p1] = chrs[p2];
chrs[p2] = tmp;
}
/**********************************************************************************/
// 自定义一个函数,实现堆排序
public static String heapSort(String[] strs, int k) {
if (null == strs || strs.length < 2) {
return "";
}
for (int i = 0; i < strs.length; i++) {
heapInsert(strs, i);
}
int heapSize = strs.length;
swap1(strs, 0, --heapSize);
while (strs.length - heapSize != k) {
heapify(strs, 0, heapSize);
swap1(strs, 0, --heapSize);
}
return strs[k - 1];
}
public static void heapInsert(String[] strs, int index) {
while (comparaString(strs[index], strs[(index - 1) / 2]) == 1) {
swap1(strs, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
public static void heapify(String[] strs, int index, int heapSize) {
int left = index * 2 + 1;
while (left < heapSize) {
int largest = left + 1 < heapSize && comparaString(strs[left + 1], strs[left]) == 1 ? left + 1 : left;
largest = comparaString(strs[largest], strs[index]) == 1 ? largest : index;
if (index == largest) {
break;
}
swap1(strs, index, largest);
index = largest;
left = index * 2 + 1;
}
}
public static void swap1(String[] strs, int p1, int p2) {
String tmp = strs[p1];
strs[p1] = strs[p2];
strs[p2] = tmp;
}
public static int comparaString(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int p1 = 0;
int p2 = 0;
while (p1 < len1 && p2 < len2) {
if (str1.charAt(p1) < str2.charAt(p2)) {
return -1;
} else if (str1.charAt(p1) > str2.charAt(p2)) {
return 1;
} else {
p1++;
p2++;
}
}
if (len1 < len2) {
return -1;
} else if (len1 > len2) {
return 1;
} else {
return 0;
}
}
}