import java.util.Scanner;
public class Main{
public static int mod = (int)1e9+7;
//暴力递归的解法
public static int walk(int N, int cur, int rest, int P){
//递归终止条件
if(rest == 0){
return cur == P ? 1 : 0;
}
if(cur == 1){
return walk(N,2,rest-1,P);
}
if(cur == N){
return walk(N,N-1,rest-1,P);
}
return walk(N,cur-1,rest-1,P) + walk(N,cur+1,rest-1,P);
}
public static int ways1(int N, int M, int K, int P){ if(N < 2 || M < 1 || M > N || K < 1 || P < 1 || P > N){ return 0; } return walk(N, M, K, P); } //暴力递归————————动态规划 public static int ways2(int N, int M, int K, int P){ if(N < 2 || M < 1 || M > N || K < 1 || P < 1 || P > N){ return 0; } //dp[rest][cur] int[][] dp = new int[K+1][N+1]; dp[0][P] = 1; for(int i = 1; i <= K; i++){ for(int j = 1; j <= N; j++){ if(j == 1){ dp[i][1] = dp[i-1][2] % mod; }else if(j == N){ dp[i][j] = dp[i-1][N-1] % mod; }else{ dp[i][j] = (dp[i-1][j-1] + dp[i-1][j+1]) % mod; } } } return dp[K][M] % mod; } //动态规划,状态压缩 public static int ways3(int N, int M, int K, int P){ if(N < 2 || M < 1 || M > N || K < 1 || P < 1 || P > N){ return 0; } //dp[rest][cur] //这里状态压缩记住一个规律,外循环是dp[i-1][j-1];在内循环中用变量tmp = dp[j]存储 int[] dp = new int[N+1]; dp[P] = 1; for(int i = 1; i <= K; i++){ //外循环定义变量 int leftUp = 0; //在内循环中,leftUp每一次都是上次循环的值,也即dp[j-1] for(int j = 1; j <= N; j++){ int tmp = dp[j];//内循环找临时变量存储变量 if(j == 1){ dp[j] = dp[j+1] % mod; }else if(j == N){ dp[j] = leftUp % mod; }else{ dp[j] = (leftUp + dp[j+1]) % mod; } leftUp = tmp; } } return dp[M] % mod; } public static void main(String[] args){ Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int M = sc.nextInt(); int K = sc.nextInt(); int P = sc.nextInt(); System.out.println(ways3(N,M,K,P)); }
}