题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5726

题目:


给一个数组a,大小为n,接下来有m个询问,每次询问给出l、r,定义f[l,r]=gcd(al,al+1,...,ar),问f[l,r]的值 和 有多少对(l',r')使得f[l',r']=f[l,r]。n<=1e5,m<=1e5,1<=l<=r<=n,1<=l'<=r'。

解题思路:


1.线段树法+思维:

线段树的每个节点存区间gcd,query查询即可

为了统计区间gcd为k的区间个数(k=f[l,r]),需要先预处理

参考网上的博客,两种预处理的方法:

(1)和query函数类似,递归搜索(不过这个方法我 看了半天也不是特别懂)

(2)暴力预处理,巧用map(推荐!orz)

2.st表法+思维:

https://www.cnblogs.com/hchlqlz-oj-mrj/p/5687347.html

ac代码(线段树法):


暴力预处理:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1000000007;
const int maxn=1e5+10;
int g[maxn*4],a[maxn];
map<int,ll> ans;//存最终答案
map<int,ll> p[maxn];//p[i]表示以i结尾的gcd的区间集合,前者为gcd,后者为对应的区间个数
int t, n, q, x, y;
int Gcd(int a,int b)
{
    return b == 0 ? a : Gcd(b, a % b);
}
void update(int id)
{
    g[id] = Gcd(g[id << 1], g[id << 1 | 1]);
}
void build(int l,int r,int id)
{
    if(l == r)
    {
        g[id] = a[l];
        return ;
    }
    int mid = (l + r) >> 1;
    build(l, mid, id << 1);
    build(mid + 1, r, id << 1 | 1);
    update(id);
}
int query(int l, int r, int x, int y, int id)
{
    if(x <= l && r <= y)
        return g[id];
    int mid = (l + r) >> 1;
    int le=0,ri=0;
    if(x <= mid)
        le = query(l, mid, x, y, id << 1);
    if(y > mid)
        ri = query(mid + 1, r, x, y, id << 1 | 1);
    if(!le) swap(le, ri);//le为0, 不能求ri%0
    return Gcd(le, ri);//Gcd(x, 0) = x
}
int main()
{
    //freopen("/Users/zhangkanqi/Desktop/11.txt","r",stdin);
    scanf("%d", &t);
    int Case = 1;
    while(t--)
    {
        printf("Case #%d:\n", Case++);
        scanf("%d", &n);
        ans.clear();//清空!!
        for(int i = 1; i <= n; i++)
            p[i].clear();
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);

        build(1, n, 1);
        ans[a[1]] = 1,p[1][a[1]] = 1;
        for(int i = 2; i <= n; i ++)
        {
            ans[a[i]]++, p[i][a[i]] += 1;
            for(map<int,ll>::iterator it = p[i-1].begin(); it != p[i-1].end(); it++)
            {
                int tmp = Gcd(a[i], it->first);//求a[i]和之前的数的gcd
                p[i][tmp] += it->second;
                ans[tmp] += it->second;
            }
        }
        scanf("%d",&q);
        while(q--)
        {
            scanf("%d %d", &x, &y);
            int k = query(1, n, x, y, 1);
            printf("%d %lld\n",k, ans[k]);
        }
    }
    return 0;

}

 

递归搜索预处理:(可跳过)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1000000007;
const int maxn=1e5+10;
int g[maxn*4],a[maxn];
map<int,ll> ans;
int t, n, q, x, y;
int Gcd(int a,int b)
{
    return b == 0 ? a : Gcd(b, a % b);
}
void update(int id)
{
    g[id] = Gcd(g[id << 1], g[id << 1 | 1]);
}
void build(int l,int r,int id)
{
    if(l == r)
    {
        g[id] = a[l];
        return ;
    }
    int mid = (l + r) >> 1;
    build(l, mid, id << 1);
    build(mid + 1, r, id << 1 | 1);
    update(id);
}
int query(int l, int r, int x, int y, int id)
{
    if(x <= l && r <= y)
        return g[id];
    int mid = (l + r) >> 1;
    int le=0,ri=0;
    if(x <= mid)
        le = query(l, mid, x, y, id << 1);
    if(y > mid)
        ri = query(mid + 1, r, x, y, id << 1 | 1);
    if(!le) swap(le, ri);//le为0, 不能求ri%0
    return Gcd(le, ri);//Gcd(x, 0) = x
}
int search(int l, int r, int x, int y, int cur, int id, int &GCD)
{
    if(x <= l && r <= y)
    {
        if(Gcd(g[id], GCD) < cur)
        {
            if(l == r)
                return l;
            else
            {
                int mid = (l + r) >> 1, le = 0, ri = 0;
                le = search(l, mid, x, y, cur, id << 1, GCD);
                if(le) return le;
                ri = search(mid + 1, r, x, y, cur, id << 1 | 1, GCD);
                return ri;
            }
        }
        else
        {
            GCD = Gcd(g[id], GCD);
            return 0;
        }
    }
    int mid = (l + r) >> 1, le = 0, ri = 0;
    if(x <= mid)
        le = search(l, mid, x, y, cur, id << 1, GCD);
    if(le) return  le;
    if(y > mid)
        ri =  search(mid + 1, r, x, y, cur, id << 1 | 1, GCD);
    return ri;
}
int main()
{
    //freopen("/Users/zhangkanqi/Desktop/11.txt","r",stdin);
    scanf("%d", &t);
    int Case = 1;
    while(t--)
    {
        ans.clear();//清空!!
        printf("Case #%d:\n", Case++);
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        build(1, n, 1);
        int GCD, nex;
        for(int i = 1; i <= n; i++)
        {
            int G=query(1, n, i, n, 1);
            //cout << "g :" << G<<endl;
            for( int now = i, cur = a[i]; now <= n; )
            {
                if(G == cur)
                {
                    ans[G] += n - now + 1;
                    break;
                }
                GCD  =  a[i];
                nex = search(1, n, i, n, cur, 1, GCD);//nex 表示【i,i+1】,【i,i+2】,。。【i,nex-1】内的gcd都是cur
                ans[cur] += nex - now;
                //cout<< " nex - now:"<<nex - now << endl;
                now = nex;
                cur = Gcd(a[now], cur);
            }
        }
        scanf("%d",&q);
        while(q--)
        {
            scanf("%d %d", &x, &y);
            int k = query(1, n, x, y, 1);
            printf("%d %lld\n",k, ans[k]);
        }
    }
    return 0;

}

【参考博客】:

https://blog.csdn.net/qq_40507857/article/details/81675524

https://blog.csdn.net/u013167299/article/details/51979844