使用堆的解法
对于求第k大,相当于就是求容量为k的大根堆的堆顶元素,但是这里的k是[1...m],逐1增加。
假如现在大根堆的容量为k,要加入一些新元素过来,然后求第k+1大。
就可以将新元素插入大根堆,然后从大根堆取出堆顶再放入小根堆(因为此时的堆顶并不一定就是第k+1大),这里的作用就是看哪些新元素能够直接留在容量k的大根堆,然后把一些不属于大根堆的元素踢出来,放入小根堆。
然后要求第K+1大的时候,就再把小根堆的堆顶放入到大根堆。现在就变成了容量为K+1的大根堆,堆顶就是答案了。
代码
#include <bits/stdc++.h> #define ios ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0) #define debug_in freopen("in.txt","r",stdin) #define debug_out freopen("out.txt","w",stdout); #define pb push_back #define all(x) x.begin(),x.end() #define fs first #define sc second using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll,ll> pii; const ll maxn = 1e6+10; const ll maxM = 1e6+10; const ll inf = 1e8; const ll inf2 = 1e17; template<class T>void read(T &x){ T s=0,w=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();} while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar(); x = s*w; } template<class H, class... T> void read(H& h, T&... t) { read(h); read(t...); } template<class T> void pt(T x){ cout<<x<<" "; } template <typename T, typename... Args> void pt(const T& t, const Args& ... data){ cout<<t<<" "; pt(data...); } //-------------------------------------------- int N,M; ll a[maxn],b[maxn]; priority_queue<ll,vector<ll>,greater<ll> > qmin; priority_queue<ll> qmax; int main(){ // debug_in; read(N,M); for(int i = 1;i<=N;i++) read(a[i]); for(int i = 1;i<=M;i++) read(b[i]); for(int i = 1;i<=M;i++){ for(int j = b[i-1] + 1;j<=b[i];j++){ qmax.push(a[j]); qmin.push(qmax.top()); qmax.pop(); } qmax.push(qmin.top());qmin.pop(); printf("%lld\n",qmax.top()); } return 0; }
平衡树做法
对于平衡树来说,就是板子题了,只不过代码量太大。
这里使用的是treap平衡树
代码
#include <bits/stdc++.h> #define ios ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0) #define debug_in freopen("in.txt","r",stdin) #define debug_out freopen("out.txt","w",stdout); #define pb push_back #define all(x) x.begin(),x.end() #define fs first #define sc second using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll,ll> pii; const ll maxn = 1e6+10; const ll maxM = 1e6+10; const ll inf = 1e17; const ll inf2 = 1e17; template<class T>void read(T &x){ T s=0,w=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();} while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar(); x = s*w; } template<class H, class... T> void read(H& h, T&... t) { read(h); read(t...); } template<class T> void pt(T x){ cout<<x<<" "; } template <typename T, typename... Args> void pt(const T& t, const Args& ... data){ cout<<t<<" "; pt(data...); } //-------------------------------------------- struct Treap{ ll root,idx; struct node{ ll l,r; ll key,val; ll cnt,size; }tr[100010]; void pushup(ll p){ tr[p].size = tr[tr[p].l].size + tr[tr[p].r].size + tr[p].cnt; } ll get_node(ll key){ tr[++idx].key = key; tr[idx].val = rand(); tr[idx].cnt = tr[idx].size = 1; return idx; } void zig(ll &p){ ll q = tr[p].l; tr[p].l = tr[q].r,tr[q].r = p,p = q; pushup(tr[p].r),pushup(p); } void zag(ll &p){ ll q = tr[p].r; tr[p].r = tr[q].l,tr[q].l = p,p = q; pushup(tr[p].l),pushup(p); } void build(){ get_node(-inf);get_node(inf); root = 1,tr[1].r = 2; pushup(root); if(tr[1].val < tr[2].val) zag(root); } void insert(ll &p,ll key){ if(!p) p = get_node(key); else if(tr[p].key == key) tr[p].cnt++; else if(key < tr[p].key){ insert(tr[p].l,key); if(tr[tr[p].l].val > tr[p].val) zig(p); }else{ insert(tr[p].r,key); if(tr[tr[p].r].val > tr[p].val) zag(p); } pushup(p); } void remove(ll &p,ll key){ if(!p) return ; if(tr[p].key == key){ if(tr[p].cnt > 1) tr[p].cnt--; else if(tr[p].l || tr[p].r){ if(!tr[p].r || tr[tr[p].l].val > tr[tr[p].r].val){ zig(p); remove(tr[p].r,key); }else{ zag(p); remove(tr[p].l,key); } }else p = 0; }else if(key < tr[p].key) remove(tr[p].l,key); else remove(tr[p].r,key); pushup(p); } ll get_rank_by_key(ll p,ll key){ if(!p) return 0; if(key < tr[p].key) return get_rank_by_key(tr[p].l,key); else if(key == tr[p].key) return tr[tr[p].l].size + 1; else return tr[tr[p].l].size + tr[p].cnt + get_rank_by_key(tr[p].r,key); } ll get_key_by_rank(ll p,ll rank){ if(!p) return inf; if(rank <= tr[tr[p].l].size) return get_key_by_rank(tr[p].l,rank); else if(rank <= tr[tr[p].l].size + tr[p].cnt) return tr[p].key; else return get_key_by_rank(tr[p].r, rank - tr[tr[p].l].size - tr[p].cnt); } ll get_prev(ll p,ll key){ if(!p) return -inf; if(key <= tr[p].key) return get_prev(tr[p].l,key); else return max(tr[p].key,get_prev(tr[p].r,key)); } ll get_next(ll p,ll key){ if(!p) return inf; if(key >= tr[p].key) return get_next(tr[p].r,key); else return min(tr[p].key,get_next(tr[p].l,key)); } }trp; ll N,M; ll a[maxn]; int main(){ // debug_in; trp.build(); read(N,M); ll last = 0,get = 1; for(ll i = 1;i<=N;i++) read(a[i]); for(ll i = 1;i<=M;i++){ ll t;read(t); for(ll j = last+1;j<=t;j++){ trp.insert(trp.root,a[j]); } last = t; ll ans = trp.get_key_by_rank(trp.root,get+1); get++; printf("%lld\n",ans); } return 0; }