Problem
Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
Each number in candidates
may only be used once in the combination.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5, A solution set is: [ [1,2,2], [5] ]
问题
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明:
- 所有数字(包括目标数)都是正整数。
- 解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8, 所求解集为: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 所求解集为: [ [1,2,2], [5] ]
思路
回溯模板
res = [] def backtrack(路径, 选择列表): if 满足结束条件: res.append(路径) return for 选择 in 选择列表: 做选择 backtrack(路径, 选择列表) 撤销选择
Python3 代码
from typing import List class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: n = len(candidates) if n == 0: return [] # accelerate 剪枝提速,非必需 candidates.sort() path, res = [], [] self.dfs(candidates, 0, n, path, res, target) return res def dfs(self, candidates, start, n, path, res, target): # 1.valid result 递归终止情况 if target == 0: res.append(path[:]) return for i in range(start, n): tmp = target - candidates[i] # 3.pruning 剪枝 if tmp < 0: break # 防止出现这种情况:一个数字使用多次 if i > start and candidates[i] == candidates[i - 1]: continue # 2.backtrack and update 回溯以及更新 path path.append(candidates[i]) self.dfs(candidates, i + 1, n, path, res, tmp) path.pop()