题意大意
给定数列,区间查询和,区间取模,单点修改。
\(n\),\(m\)小于\(10^5\)
题目描述
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array \(a[1],a[2],...,a[n]\). Then he should perform a sequence of mm operations. An operation can be one of the following:
- Print operation \(l,r\) . Picks should write down the value of .
- Modulo operation \(l,r,x\) . Picks should perform assignment \(a[i]=a[i] mod x\) for each \(i\) \((l<=i<=r)\).
- Set operation \(k,x\) . Picks should set the value of \(a[k]\) to \(x\) (in other words perform an assignment \(a[k]=x\)).
Can you help Picks to perform the whole sequence of operations?
输入输出格式
输入格式:
The first line of input contains two integer: \(n,m\) \((1<=n,m<=10^{5})\) . The second line contains nnintegers, separated by space: \(a[1],a[2],...,a[n] (1<=a[i]<=10^{9})\) — initial value of array elements.
Each of the next mm lines begins with a number typetype .
- If \(type=1\) , there will be two integers more in the line: \(l,r (1<=l<=r<=n)\) , which correspond the operation \(1\).
- If \(type=2\) , there will be three integers more in the line: \(l,r,x (1<=l<=r<=n; 1<=x<=10^{9})\) , which correspond the operation \(2\).
- If \(type=3\), there will be two integers more in the line: \(k,x (1<=k<=n; 1<=x<=10^{9})\) , which correspond the operation \(3\).
输出格式:
For each operation \(1\), please print a line containing the answer. Notice that the answer may exceed the \(32\)-bit integer.
输入输出样例
输入样例#1:
5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3
输出样例#1:
8
5
输入样例#2:
10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10
输出样例#2:
49
15
23
1
9
说明
Consider the first testcase:
- At first, a={1,2,3,4,5}.
- After operation 1 , a={1,2,3,0,1}.
- After operation 2 , a={1,2,5,0,1}.
- At operation 3 , 2+5+0+1=8.
- After operation 4 , a={1,2,2,0,1}.
- At operation 5 , 1+2+2=5.
思路:
题目大意:给定数列,区间查询和,区间取模,单点修改。
\(n,m\)小于\(10^5\)
查询区间和和单点修改就不用说了吧,线段树基本操作,那??对于这道题目的区间修改该怎么处理呢??不难发现,一个数模两次同样的数时没有任何意义的,而且一个数模一个比它大的数也是没有意义的?!!!那么,我们便可以采用一种暴力的思想,去修改每一个位置,每次判断一下区间最大值是不是比模数大即可。因为是暴力修改,所以也无需\(pushdown\),那么代码应该就很好写了吧,也不算太长。
下面是我的代码,仅供参考,毕竟太丑了:
#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
#define ll long long
using namespace std;
int n,m,maxx[maxn<<2];
ll sum[maxn<<2];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
inline void pushup(int rt) {
sum[rt]=sum[ls]+sum[rs];
maxx[rt]=max(maxx[ls],maxx[rs]);
}
void build(int rt, int l, int r) {
if(l==r) {
maxx[rt]=sum[rt]=qread();
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(rt);
}
void add(int rt, int l, int r, int L, int val) {
if(l==r) {
maxx[rt]=sum[rt]=val;
return;
}
int mid=(l+r)>>1;
if(L<=mid) add(ls,l,mid,L,val);
else add(rs,mid+1,r,L,val);
pushup(rt);
}
ll csum(int rt, int l, int r, int L, int R) {
if(L<=l&&r<=R) return sum[rt];
int mid=(l+r)>>1;
ll ans=0;
if(L<=mid) ans+=csum(ls,l,mid,L,R);
if(R>mid) ans+=csum(rs,mid+1,r,L,R);
return ans;
}
void modify(int rt, int l, int r, int L, int R, int p) {
if(maxx[rt]<p) return;
if(l==r) {
sum[rt]%=p;maxx[rt]%=p;
return;
}
int mid=(l+r)>>1;
if(L<=mid) modify(ls,l,mid,L,R,p);
if(R>mid) modify(rs,mid+1,r,L,R,p);
pushup(rt);
}
int main() {
n=qread(),m=qread();
build(1,1,n);
for(int i=1,k,x,y,z;i<=m;++i) {
k=qread(),x=qread(),y=qread();
if(k==1) printf("%lld\n",csum(1,1,n,x,y));
if(k==2) {
z=qread();
modify(1,1,n,x,y,z);
}
if(k==3) add(1,1,n,x,y);
}
return 0;
}