@[toc]
源自oi-wiki树链剖分

思想及能解决的问题

树链剖分用于将树分割成若干条链的形式,以维护树上路径的信息。
具体的说:
将整棵树剖分为若干条链,使它组合成线性结构,然后用其他的数据结构维护信息。

树链剖分有重链剖分,长链剖分和用于Link/cut Tree的剖分,大多数情况下(没有特别说明时),“树链剖分”都指“重链剖分”

解决的问题

  1. 修改 树上两点之间的路径上 所有点的值。
  2. 查询 树上两点之间的路径上 节点权值的 和/极值/其它(在序列上可以用数据结构维护,便于合并的信息)。

    重链剖分

    定义:

    重子节点

    表示其子节点中子树最大的子结点。如果有多个子树最大的子结点,取其一。如果没有子节点,就无重子节点。

    轻子节点

    表示剩余的所有子结点。

    重边

    从这个结点到重子节点的边为 重边。

    轻边

    到其他轻子节点的边为 轻边。

    重链

    若干条首尾衔接的重边构成 重链

把落单的结点也当做重链,那么整棵树就被剖分成若干条重链
如图:
在这里插入图片描述

性质:

树上每个节点都属于且仅属于一条重链。
所有的重链将整棵树 完全剖分。
在剖分时 重边优先遍历,最后树的 DFN 序上,重链内的 DFN 序是连续的。按 DFN 排序后的序列即为剖分后的链。
一颗子树内的 DFN 序是连续的。

应用操作

求最近公共祖先

不断向上跳重链,当跳到同一条重链上时,深度较小的结点即为 LCA。
向上跳重链时需要先跳所在重链顶端深度较大的那个。

路径上维护

路径上更改值

inline void updRange(int x,int y,int k){//同上 
    k%=mod;
    while(top[x]!=top[y]){
        if(dep[top[x]]<dep[top[y]])swap(x,y);
        update(1,1,n,id[top[x]],id[x],k);
        x=fa[top[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    update(1,1,n,id[x],id[y],k);
}

路径求和

inline int qRange(int x,int y){
    int ans=0;
    while(top[x]!=top[y]){//当两个点不在同一条链上 
        if(dep[top[x]]<dep[top[y]])swap(x,y);//把x点改为所在链顶端的深度更深的那个点
        res=0;
        query(1,1,n,id[top[x]],id[x]);//ans加上x点到x所在链顶端 这一段区间的点权和
        ans+=res;
        ans%=mod;//按题意取模 
        x=fa[top[x]];//把x跳到x所在链顶端的那个点的上面一个点
    }
    //直到两个点处于一条链上
    if(dep[x]>dep[y])swap(x,y);//把x点深度更深的那个点
    res=0;
    query(1,1,n,id[x],id[y]);//这时再加上此时两个点的区间和即可
    ans+=res;
    return ans%mod;
}

子树维护

子树更改值

inline void updSon(int x,int k){//同上 
    update(1,1,n,id[x],id[x]+siz[x]-1,k);
}

子树求和

inline int qSon(int x){
    res=0;
    query(1,1,n,id[x],id[x]+siz[x]-1);//子树区间右端点为id[x]+siz[x]-1 
    return res;
}

代码:

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define Rint register int
#define mem(a,b) memset(a,(b),sizeof(a))
#define Temp template<typename T>
using namespace std;
typedef long long LL;
Temp inline void read(T &x){
    x=0;T w=1,ch=getchar();
    while(!isdigit(ch)&&ch!='-')ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^'0'),ch=getchar();
    x=x*w;
}

#define mid ((l+r)>>1)
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define len (r-l+1)

const int maxn=200000+10;
int n,m,r,mod;
//见题意 
int e,beg[maxn],nex[maxn],to[maxn],w[maxn],wt[maxn];
//链式前向星数组,w[]、wt[]初始点权数组 
int a[maxn<<2],laz[maxn<<2];
//线段树数组、lazy操作 
int son[maxn],id[maxn],fa[maxn],cnt,dep[maxn],siz[maxn],top[maxn]; 
//son[]重儿子编号,id[]新编号,fa[]父亲节点,
//cnt dfs_clock/dfs序,dep[]深度,siz[]子树大小,top[]当前链顶端节点 
int res=0;
//查询答案 

inline void add(int x,int y){//链式前向星加边 
    to[++e]=y;
    nex[e]=beg[x];
    beg[x]=e;
}
//-------------------------------------- 以下为线段树 
inline void pushdown(int rt,int lenn){
    laz[rt<<1]+=laz[rt];
    laz[rt<<1|1]+=laz[rt];
    a[rt<<1]+=laz[rt]*(lenn-(lenn>>1));
    a[rt<<1|1]+=laz[rt]*(lenn>>1);
    a[rt<<1]%=mod;
    a[rt<<1|1]%=mod;
    laz[rt]=0;
}

inline void build(int rt,int l,int r){
    if(l==r){
        a[rt]=wt[l];
        if(a[rt]>mod)a[rt]%=mod;
        return;
    }
    build(lson);
    build(rson);
    a[rt]=(a[rt<<1]+a[rt<<1|1])%mod;
}

inline void query(int rt,int l,int r,int L,int R){
    if(L<=l&&r<=R){res+=a[rt];res%=mod;return;}
    else{
        if(laz[rt])pushdown(rt,len);
        if(L<=mid)query(lson,L,R);
        if(R>mid)query(rson,L,R);
    }
}

inline void update(int rt,int l,int r,int L,int R,int k){
    if(L<=l&&r<=R){
        laz[rt]+=k;
        a[rt]+=k*len;
    }
    else{
        if(laz[rt])pushdown(rt,len);
        if(L<=mid)update(lson,L,R,k);
        if(R>mid)update(rson,L,R,k);
        a[rt]=(a[rt<<1]+a[rt<<1|1])%mod;
    }
}
//---------------------------------以上为线段树 
inline int qRange(int x,int y){
    int ans=0;
    while(top[x]!=top[y]){//当两个点不在同一条链上 
        if(dep[top[x]]<dep[top[y]])swap(x,y);//把x点改为所在链顶端的深度更深的那个点
        res=0;
        query(1,1,n,id[top[x]],id[x]);//ans加上x点到x所在链顶端 这一段区间的点权和
        ans+=res;
        ans%=mod;//按题意取模 
        x=fa[top[x]];//把x跳到x所在链顶端的那个点的上面一个点
    }
    //直到两个点处于一条链上
    if(dep[x]>dep[y])swap(x,y);//把x点深度更深的那个点
    res=0;
    query(1,1,n,id[x],id[y]);//这时再加上此时两个点的区间和即可
    ans+=res;
    return ans%mod;
}

inline void updRange(int x,int y,int k){//同上 
    k%=mod;
    while(top[x]!=top[y]){
        if(dep[top[x]]<dep[top[y]])swap(x,y);
        update(1,1,n,id[top[x]],id[x],k);
        x=fa[top[x]];
    }
    if(dep[x]>dep[y])swap(x,y);
    update(1,1,n,id[x],id[y],k);
}

inline int qSon(int x){
    res=0;
    query(1,1,n,id[x],id[x]+siz[x]-1);//子树区间右端点为id[x]+siz[x]-1 
    return res;
}

inline void updSon(int x,int k){//同上 
    update(1,1,n,id[x],id[x]+siz[x]-1,k);
}

inline void dfs1(int x,int f,int deep){//x当前节点,f父亲,deep深度 
    dep[x]=deep;//标记每个点的深度 
    fa[x]=f;//标记每个点的父亲 
    siz[x]=1;//标记每个非叶子节点的子树大小 
    int maxson=-1;//记录重儿子的儿子数 
    for(Rint i=beg[x];i;i=nex[i]){
        int y=to[i];
        if(y==f)continue;//若为父亲则continue 
        dfs1(y,x,deep+1);//dfs其儿子 
        siz[x]+=siz[y];//把它的儿子数加到它身上 
        if(siz[y]>maxson)son[x]=y,maxson=siz[y];//标记每个非叶子节点的重儿子编号 
    }
}

inline void dfs2(int x,int topf){//x当前节点,topf当前链的最顶端的节点 
    id[x]=++cnt;//标记每个点的新编号 
    wt[cnt]=w[x];//把每个点的初始值赋到新编号上来 
    top[x]=topf;//这个点所在链的顶端 
    if(!son[x])return;//如果没有儿子则返回 
    dfs2(son[x],topf);//按先处理重儿子,再处理轻儿子的顺序递归处理 
    for(Rint i=beg[x];i;i=nex[i]){
        int y=to[i];
        if(y==fa[x]||y==son[x])continue;
        dfs2(y,y);//对于每一个轻儿子都有一条从它自己开始的链 
    }
}

int main(){
    read(n);read(m);read(r);read(mod);
    for(Rint i=1;i<=n;i++)read(w[i]);
    for(Rint i=1;i<n;i++){
        int a,b;
        read(a);
        read(b);
        add(a,b);
        add(b,a);
    }
    dfs1(r,0,1);
    dfs2(r,r);
    build(1,1,n);
    while(m--){
        int k,x,y,z;
        read(k);
        if(k==1){
            read(x);read(y);read(z);
            updRange(x,y,z);//将树从 x 到 y 结点最短路径上所有节点的值都加上 z
        }
        else if(k==2){//求树从 x 到 y 结点最短路径上所有节点的值之和。 
            read(x);read(y);
            printf("%d\n",qRange(x,y));
        }
        else if(k==3){//以 x 为根节点的子树内所有节点值都加上 z。 
            read(x);read(y);
            updSon(x,y);
        }
        else{
            read(x);
            printf("%d\n",qSon(x));//求以 xx 为根节点的子树内所有节点值之和 
        }
    }
}