章节概要
- Seaborn介绍:
- 安装Seaborn
- 加载库和数据文件
- Seaborn的绘图功能
- 用Matplotlib定制
- Pandas的作用
- Seaborn 主题
- 调色盘
- 图形重叠
- 融合数据
- 迷你画廊
安装Seaborn
首先确定你的电脑已安装以下应用
- Python 2.7+ or Python 3
- Pandas
- Matplotlib
- Seaborn
- Jupyter Notebook(可选)
打开Jupyter Notebook, 过几秒钟会弹出网页窗口Home。
点击右侧的New,新建一个Notebook,弹出一个新的网页窗口,点击上方可命名文件。
Seaborn介绍:
Seaborn属于Matplotlib的一个高级接口,为我们进行数据的可视化分析提供了极大的方便。
加载库和数据文件
加载pandas、matplotlib、seaborn。
# coding: utf-8
#加载pandas
import pandas as pd
#加载matplotlib
from matplotlib import pyplot as plt
#在notebook中显示数据点
%matplotlib inline
#加载seaborn
import seaborn as sb
这里提供了一个数据文件,下载链接为
Pokemon.csv
用pandas读取数据文件,并显示前五行。
#用pandas读取Pokemon.csv
df = pd.read_csv("f:/Pokemon.csv", encoding = "unicode_escape")
#读取前五行,编译后的结果为一个列表。
df.head()
# | Name | Type 1 | Type 2 | Total | HP | Attack | Defense | Sp. Atk | Sp. Def | Speed | Stage | Legendary | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Bulbasaur | Grass | Poison | 318 | 45 | 49 | 49 | 65 | 65 | 45 | 1 | False |
1 | 2 | Ivysaur | Grass | Poison | 405 | 60 | 62 | 63 | 80 | 80 | 60 | 2 | False |
2 | 3 | Venusaur | Grass | Poison | 525 | 80 | 82 | 83 | 100 | 100 | 80 | 3 | False |
3 | 4 | Charmander | Fire | NaN | 309 | 39 | 52 | 43 | 60 | 50 | 65 | 1 | False |
4 | 5 | Charmeleon | Fire | NaN | 405 | 58 | 64 | 58 | 80 | 65 | 80 | 2 | False |
#绘制散点图
sb.lmplot(x = 'Attack', y = 'Defense', data = df)
D:\Function\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<seaborn.axisgrid.FacetGrid at 0x2ea94d27c50>
Seaborn的绘图功能
Seaborn最大的优点之一在于其种类繁多的绘图功能,下面我们利用lmplot()函数,用一行代码来绘制散点图。我们希望x轴显示Attack数据,y轴显示Defense数据,则可以编写代码。
事实上seaborn并没有专门用来绘制散点图的功能,实际上我们用它来拟合和绘制回归线。
幸运的是,我们可以通过设置函数的参数来得到我们想要的散点图。用fit_reg = False 移去回归线,用hug参数来用不同颜色显示Pokemon进化阶段的信息。
#移去回归线,用不同颜色来表示pokemon的进化阶段,即刻得到散点图:
sb.lmplot(x = 'Attack', y = 'Defense', data = df,
fit_reg = False,
hue = 'Stage')
<seaborn.axisgrid.FacetGrid at 0x2ea950e4278>
从散点图可以看出,所有的数据点都分布在数轴的正半轴,然而散点图的数轴从负数开始的,我们可以对它进行改进。
用Matplotlib定制
虽然Seaborn是Matplotlib的一个高级接口,但是我们有时候也需要用到Matplotlib。其中包括设置数轴的范围。我们利用Matplotlib的ylim()和xlim()函数来设置数轴的范围。
#设置数轴范围
plt.gca().set(xlim = (0, None), ylim = (0, None),
xlabel='Attack', ylabel='Defense')
[(0, 1.0), Text(0, 0.5, 'Defense'), (0, 1.0), Text(0.5, 0, 'Attack')]
Pandas的作用
尽管这是一个Seaborn教程,pandas依然在实际应用中起到了十分重要的作用。下面我们根据Pokemon的攻击数据来绘制箱形图
sb.boxplot(data = df)
#得到的箱形图:
<matplotlib.axes._subplots.AxesSubplot at 0x2ea950c99b0>
很好,这是一个良好的开端,但是我们可以移除不需要的几列数据。
移除掉Total,因为我们有独立的统计数据。
移除掉Stage跟Legendary,因为它们不是攻击统计数据。
我们可以创建一个新的数据集stats_df,满足我们上述的要求。
#创建新数据集
stats_df = df.drop(['Total', 'Stage', 'Legendary'], axis = 1)
#Boxplot
sb.boxplot(data = stats_df)
<matplotlib.axes._subplots.AxesSubplot at 0x2ea962be358>
得到了一个改进了的箱形图。
Seaborn 主题
Seaborn的另一个好处就是其恰到好处、开箱即用的风格主题。其默认的主题为“darkgrid”
下一步,我们把主题改为“whitegrid”来创建一个小提琴图
小提琴图常常作为箱形图的替代
小提琴图通过小提琴的厚度展示了数据的分布,而不仅仅是总结数据。
根据Pokemon的主要类型,我们可以将Attack数据的分布可视化。
#设置主题
sb.set_style('whitegrid')
#violin plot
sb.violinplot(x = 'Type 1', y = 'Attack', data = df)
<matplotlib.axes._subplots.AxesSubplot at 0x2ea96343828>
可以得到小提琴图,x轴显示的是Pokemon的Type1,y轴显示的是不同Pokemon的攻击数值。
调色盘
Seaborn可以根据我们的需求,来设置颜色。我们可以创建一个python命令列表,用颜色的十六进制数值来设置。数值可以在Bulbapedia中寻找。
#创建颜色列表
pkmn_type_colors = ['#78C850',
'#F08030',
'#6890F0',
'#A8B820',
'#A8A878',
'#A040A0',
'#F8D030',
'#E0C068',
'#EE99AC',
'#C03028',
'#F85888',
'#B8A038',
'#705898',
'#98D8D8',
'#7038F8'
]
#导入小提琴图中
sb.violinplot(x = 'Type 1', y = 'Attack', data = df,
palette = pkmn_type_colors)
D:\Function\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<matplotlib.axes._subplots.AxesSubplot at 0x2ea94d24470>
为了能够让数据文件中的151个Pokemon都能够在图中简单展示,我们可以用群集图 swarm plot达到这一目的。
sb.swarmplot(x = 'Type 1', y = 'Attack', data = df,
palette = pkmn_type_colors)
<matplotlib.axes._subplots.AxesSubplot at 0x2ea96d5bda0>
图形重叠
我们已经绘制出了小提琴图和群集图,Seaborn允许我们将这两张图整合在一张图上,步骤如下:
首先,我们用Matplotlib设置图形比例。
然后,我们绘制小提琴图,用inner = None将小提琴中间的木杆移去。
接着,我们绘制群集图,并将数据点的颜色变为黑色。
最后,我们可以用Matplotlib设置一个标题。
#设置图形比例
plt.figure(figsize = (10, 6))
#创建violinplot
sb.violinplot(x = 'Type 1', y = 'Attack', data = df,
inner = None,
palette = pkmn_type_colors)
#创建swarmplot
sb.swarmplot(x = 'Type 1', y = 'Attack', data = df,
color = 'k',
palette = pkmn_type_colors)
#设置标题
plt.title('Attack by Type')
#其中alpha为透明度。 编译后可以得到如下图形。
Text(0.5, 1.0, 'Attack by Type')
现在我们可以清晰的看到不同Pokemon的攻击值了。那么我们怎么看其他的数值呢?
融合数据
为了展现其他的数据,我们当然可以重复以上的步骤,绘制多张图。但是我们同样也可以在一张图上表示所有的数据,这时候pandas就派上用场了。
我们可以利用pandas的melt()函数来将一些数据进行融合,这样就可以在不同Pokemon之间直接进行比对,melt()需要导入3个参数,分别为:
需要融合的数据列表
需要保留的ID变量,其他变量将会被Pandas融合。
融合而成的新变量的名字。
#数据融合
melted_df = pd.melt(stats_df,
id_vars = ['Name', 'Type 1', 'Type 2'],
var_name = 'Stat')
#前五行
melted_df.head()
Name | Type 1 | Type 2 | Stat | value | |
---|---|---|---|---|---|
0 | Bulbasaur | Grass | Poison | # | 1 |
1 | Ivysaur | Grass | Poison | # | 2 |
2 | Venusaur | Grass | Poison | # | 3 |
3 | Charmander | Fire | NaN | # | 4 |
4 | Charmeleon | Fire | NaN | # | 5 |
我们为已经融合的数据列表melted_df绘制群集图。
#数据融合
melted_df = pd.melt(stats_df,
id_vars = ['Name', 'Type 1', 'Type 2'],
var_name = 'Stat')
#前五行
melted_df.head()
#绘制群集图
sb.swarmplot(x = 'Stat', y = 'value', data = melted_df,
hue = 'Type 1')
#就可以得到如下的群集图。x轴为Stat中融合的六个变量,y轴为Stat的值,不同颜色代表不同的Pokemon Type 1。
<matplotlib.axes._subplots.AxesSubplot at 0x2ea9887da58>
这张图表有一些细节需要完善:
扩大图表。
使用split = True 来分隔色调。
使用我们自定义的颜色。
调整y轴的范围
将图例放在右侧。
#扩大图表
plt.figure(figsize = (10, 8))
#绘制群集图,使用split = True 来分割,使用自定义的颜色
sb.swarmplot(x = 'Stat', y = 'value', data = melted_df,
hue = "Type 1",
split = True,
palette = pkmn_type_colors)
#调整Y轴的范围
plt.ylim(0,260)
#将图例放在右侧
plt.legend(bbox_to_anchor = (1,1), loc = 2)
D:\Function\Anaconda3\lib\site-packages\seaborn\categorical.py:2974: UserWarning: The `split` parameter has been renamed to `dodge`.
warnings.warn(msg, UserWarning)
<matplotlib.legend.Legend at 0x2ea98a7f0b8>
即可得到一个已经细节完善后的图表。
迷你画廊
Heatmap
Heatmap可以帮助可视化矩阵状的数据。
#计算相关性
corr = stats_df.corr()
#Hteatmap
sb.heatmap(corr)
<matplotlib.axes._subplots.AxesSubplot at 0x2ea98dac4e0>
Histogram
Histogram能够绘制变量的数值分布。
#绘制直方图
sb.distplot(df.Attack)
<matplotlib.axes._subplots.AxesSubplot at 0x2ea988d2da0>
Bar Plot
条形图可以帮助分类变量的可视化。
#绘制条形图abs
sb.countplot(x = 'Type 1', data = df, palette = pkmn_type_colors)
#倾斜x轴的标签
plt.xticks(rotation = -45)
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
<a list of 15 Text xticklabel objects>)
Factor plots
Factor plots能够根据类别分离图表。
#分离图表
g = sb.factorplot(x = 'Type 1',
y = 'Attack',
data = df,
hue = 'Stage', #用不同的颜色表示Stage
col = 'Stage', #根据Stage来分离图表
kind = 'swarm', #创建群集图
)
#倾斜x轴的标签
plt.xticks(rotation = -45)
D:\Function\Anaconda3\lib\site-packages\seaborn\categorical.py:3666: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.
warnings.warn(msg)
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
<a list of 15 Text xticklabel objects>)
可以得到根据Stage分离的三个图表,分别用不同颜色的点表示不同的Pokemon。
Density Plot
密度图显示的是两个变量之间的分布。
曲线越密集的地方说明两个变量的关系越近,越稀疏的地方说明关系越远。
#创建密度图
sb.kdeplot(df.Attack, df.Defense)
D:\Function\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<matplotlib.axes._subplots.AxesSubplot at 0x2ea9a8d6f60>
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g1XL7V5x-1579614074739)(https://cdn.jsdelivr.net/gh/InfiniteYinux/cloud@master/img/seaborn/output_47_2.png)]
Joint Distribution Plot
联合分布图将散点图和直方图的信息结合起来,提供双变量分布的详细信息。
#创建联合分布图
sb.jointplot(x = 'Attack', y = 'Defense', data = df)
<seaborn.axisgrid.JointGrid at 0x2ea9ab74da0>
这里只是介绍了Seaborn常用的绘图功能,还有更强大的功能Example gallery需要我们去学习,去探索。