B. Vasya and Isolated Vertices
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Vasya has got an undirected graph consisting of n
vertices and m edges. This graph doesn't contain any self-loops or multiple edges. Self-loop is an edge connecting a vertex to itself. Multiple edges are a pair of edges such that they connect the same pair of vertices. Since the graph is undirected, the pair of edges (1,2) and (2,1)
is considered to be multiple edges. Isolated vertex of the graph is a vertex such that there is no edge connecting this vertex to any other vertex.
Vasya wants to know the minimum and maximum possible number of isolated vertices in an undirected graph consisting of n
vertices and m
edges.
Input
The only line contains two integers n
and m (1≤n≤105,0≤m≤n(n−1)2)
.
It is guaranteed that there exists a graph without any self-loops or multiple edges with such number of vertices and edges.
Output
In the only line print two numbers min
and max
— the minimum and maximum number of isolated vertices, respectively.
Examples
Input
Copy
4 2
Output
Copy
0 1
Input
Copy
3 1
Output
Copy
1 1
Note
In the first example it is possible to construct a graph with 0
isolated vertices: for example, it should contain edges (1,2) and (3,4). To get one isolated vertex, we may construct a graph with edges (1,2) and (1,3)
.
In the second example the graph will always contain exactly one isolated verte
题解:
最大孤立点:运用完全图m=n*(n-1)/2得到公式----maxi = n-(1+sqrt(1+8*m))/2;
最小孤立点:mini = n-2*m; (注意:当mini < 0时,需要让mini=0)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <vector>
#include <set>
#include <sstream>
#include <stack>
using namespace std;
int main()
{
long long n,m;
while(cin>>n>>m){
long long maxi = 0,mini = 0;
maxi = n-(1+sqrt(1+8*m))/2;
mini = n-2*m;
if(mini < 0) mini = 0;
if(m == 0){
maxi = n;
mini = n;
}
cout<<mini<<" "<<maxi<<endl;
}
return 0;
}