import numpy as np
def calculate_covariance_matrix(vectors):
# 补全代码
feature_num = len(vectors)
sample_num = len(vectors[0])
cov_matrix = np.zeros((feature_num,feature_num))
feature_mean = [sum(feature)/sample_num for feature in vectors]
for i in range(feature_num):
for j in range(feature_num):
f1_mean = feature_mean[i]
f2_mean = feature_mean[j]
tot = 0
for k in range(sample_num):
tot += (vectors[i][k] - f1_mean)*(vectors[j][k] - f2_mean)
cov_matrix[i][j] = tot/(sample_num - 1)
return cov_matrix.tolist()
# 主程序
if __name__ == "__main__":
# 输入
ndarrayA = input()
# 处理输入
import ast
A = ast.literal_eval(ndarrayA)
# 调用函数计算
output = calculate_covariance_matrix(A)
# 输出结果
print(output)