就是长得像这样的:
a n + 2 =pa n + 1 +qa n
大名鼎鼎的 斐波那契数列 a n + 2 =a n + 1 +a n 就符合这个

同样:令f(x)=a 0 x 0 +a 1 x 1 +……+a n x n ——①

而:
-pxf(x)=-pa 0 x 1 -pa 2 x 2 -……-pa n x n + 1 ——②

-qx 2 f(x)=-pa 0 x 2 -pa 1 x 3 -……-pa n x n + 2 ——③

①+②+③:
(1-px+qx 2 )f(x)=a 0 +(a 1 -pa 0 )x+(a 2 -a 1 -qa 0 )x 2 +(a 3 -a 2 -qa 1 )x 3 +…+(a n + 2 -a n + 1 -qa n )x n + 2

关键来了:为啥我们要这样构造呢?
因为 a n + 2 =pa n + 1 +qa n 移一下项就是:a n + 2 -pa n + 1 -qa n =0
因此,①+②+③就变成了:

(1-px+qx 2 )f(x)=a 0 +(a 1 -pa 0 )x

f(x)= a 0 + ( a 1 p a 0 ) x ( 1 p x + q x 2 )

同理拆开成:f(x)= k 1 1 b 1 x + k 2 1 b 2 x 的样子,再展开回去就阔以啦~

这里我们就用斐波那契数列p=1,q=1的时候来说吧:
这里我们把a 1 当第一项,a 2 当第二项,a 1 =1,a 2 =1
f(x)= 1 1 x x 2 = <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> ( 1 <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> x ) </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> ( 1 <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 + 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> x ) </mstyle>

令:
a= <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle>
b= <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 + 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle>
f(x)= 1 1 x x 2 = 1 1 a x 1 1 b x

= <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 5 </mstyle> ( 1 1 a x - 1 1 b x )

= <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 5 </mstyle> <munderover> n = 0 </munderover> ( (ax) n -(bx) n )

= <munderover> n = 0 </munderover> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 5 </mstyle> ( (a) n -(b) n )x n

So:a n = <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 5 </mstyle> ( ( <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> ) n -( <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 1 + 5 </mstyle> <mpadded depth="3pt" height="8&#46;6pt" width="0"> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> 2 </mstyle> ) n
( ̄▽ ̄)~*