import numpy as np def feature_scaling(data): # 补全代码 # 标准化 (Z-score 标准化) mean = np.mean(data, axis=0) std = np.std(data, axis=0) standardized_data = (data - mean) / std # 最小-最大标准化 min_vals = np.min(data, axis=0) max_vals = np.max(data, axis=0) min_max_scaled_data = (data - min_vals) / (max_vals - min_vals) # 四舍五入保留小数点后四位 standardized_data = np.round(standardized_data, 4) min_max_scaled_data = np.round(min_max_scaled_data, 4) return standardized_data.tolist(),min_max_scaled_data.tolist() # 主程序 if __name__ == "__main__": # 输入数组 data = input() # 处理输入 import ast data = ast.literal_eval(data) # 调用函数计算 output = feature_scaling(data) # 输出结果 print(output)