import numpy as np
def feature_scaling(data):
# 补全代码
# 标准化 (Z-score 标准化)
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
standardized_data = (data - mean) / std
# 最小-最大标准化
min_vals = np.min(data, axis=0)
max_vals = np.max(data, axis=0)
min_max_scaled_data = (data - min_vals) / (max_vals - min_vals)
# 四舍五入保留小数点后四位
standardized_data = np.round(standardized_data, 4)
min_max_scaled_data = np.round(min_max_scaled_data, 4)
return standardized_data.tolist(),min_max_scaled_data.tolist()
# 主程序
if __name__ == "__main__":
# 输入数组
data = input()
# 处理输入
import ast
data = ast.literal_eval(data)
# 调用函数计算
output = feature_scaling(data)
# 输出结果
print(output)