题目意思

给出n个节点构成的一棵树,根节点权值为0,重儿子权值为父节点的权值,轻儿子为父节点权值+1。
问最大的权值之和为多少?注释应该码的比较清楚用个递推算一下。

Code

#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define mk(__x__,__y__) make_pair(__x__,__y__)
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
const int MOD = 1e9 + 7;
const ll INF = 0x3f3f3f3f;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar())    s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }

const int N = 1e5 + 7;
int dp[N];
// dp[n]代表题目中n个节点时的最大花费

int main() {
    int n = read();
    dp[0] = dp[1] = dp[2] = 0;
    for (int i = 3; i <= n; ++i)
        for (int j = 1; j < i; ++j) //j代表重儿子(不懂得去百度)的最大节点数
            dp[i] = max(dp[i], (i - 1) / j * dp[j] + dp[(i - 1) % j] + (i - j - 1));
    // 1、重儿子之外的无论如何安排放的位置,只要节点数不变,那么权值就不变最简单就是安排满j个节点(i - 1) / j * dp[j]
    // 2、安排不满的j节点轻儿子为dp[(i-1)%j]
    // 3、这是之前递推过来的,各个儿子还要连在根节点上所以还要加上 i-1-j;i-1是子节点,j是重儿子树,其余的节点都要多+1连在根节点上
    cout << dp[n] << endl;
    return 0;
}