题目意思
给出n个节点构成的一棵树,根节点权值为0,重儿子权值为父节点的权值,轻儿子为父节点权值+1。
问最大的权值之和为多少?注释应该码的比较清楚用个递推算一下。
Code
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) typedef long long ll; typedef unsigned long long ull; typedef long double ld; const int MOD = 1e9 + 7; const ll INF = 0x3f3f3f3f; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e5 + 7; int dp[N]; // dp[n]代表题目中n个节点时的最大花费 int main() { int n = read(); dp[0] = dp[1] = dp[2] = 0; for (int i = 3; i <= n; ++i) for (int j = 1; j < i; ++j) //j代表重儿子(不懂得去百度)的最大节点数 dp[i] = max(dp[i], (i - 1) / j * dp[j] + dp[(i - 1) % j] + (i - j - 1)); // 1、重儿子之外的无论如何安排放的位置,只要节点数不变,那么权值就不变最简单就是安排满j个节点(i - 1) / j * dp[j] // 2、安排不满的j节点轻儿子为dp[(i-1)%j] // 3、这是之前递推过来的,各个儿子还要连在根节点上所以还要加上 i-1-j;i-1是子节点,j是重儿子树,其余的节点都要多+1连在根节点上 cout << dp[n] << endl; return 0; }