题目链接
P1784 数独
题目描述
数独是根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。
芬兰一位数学家号称设计出全球最难的“数独游戏”,并刊登在报纸上,让大家去挑战。
这位数学家说,他相信只有“智慧最顶尖”的人才有可能破解这个“数独之谜”。
据介绍,目前数独游戏的难度的等级有一道五级,一是入门等级,五则比较难。不过这位数学家说,他所设计的数独游戏难度等级是十一,可以说是所以数独游戏中,难度最高的等级他还表示,他目前还没遇到解不出来的数独游戏,因此他认为“最具挑战性”的数独游戏并没有出现。
8 0 0 0 0 0 0 0 0
0 0 3 6 0 0 0 0 0
0 7 0 0 9 0 2 0 0
0 5 0 0 0 7 0 0 0
0 0 0 0 4 5 7 0 0
0 0 0 1 0 0 0 3 0
0 0 1 0 0 0 0 6 8
0 0 8 5 0 0 0 1 0
0 9 0 0 0 0 4 0 0
8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2
数独人做的话是要靠数学逻辑,那么用计算机直接暴力枚举所有的可能,找到答案后就输出并退出,否则就一直找,那么DFS就非常合适。
我们用三个二维数组分别代表行,列,格
其中对于格来说,从1—9格,通过数学计算找规律 发现每过3列,方阵的序号+1,每过3行,方阵的序号+3。
于是我们有了这样的表达式:
方阵序号=(行数-1)/3*3+(列数-1)/3+1
二维数组第一维表示行(列,格),第二维表示要试的这个数,然后暴力跑,一行一行地填,把所有可能行全部试一遍就好
然后就是极其简单的代码啦
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=10;
int a[N][N];
bool line[N][N],lis[N][N],grid[N][N];
void print()//输出数独
{
for(int i=1;i<=9;i++)
{
for(int j=1;j<=9;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}
exit(0);//安全退出
}
void dfs(int x,int y)
{
if(a[x][y]!=0)
{
if(x==9&&y==9)
print();
if(y==9)
dfs(x+1,1);
else dfs(x,y+1);
}
else
{
for(int i=1;i<=9;i++)
{
if(!line[x][i]&&!lis[y][i]&&!grid[(x-1)/3*3+(y-1)/3+1][i])
{
a[x][y]=i;
line[x][i]=true;
lis[y][i]=true;
grid[(x-1)/3*3+(y-1)/3+1][i]=true;
if(x==9&&y==9)
print();
if(y==9)
dfs(x+1,1);
else dfs(x,y+1);
a[x][y]=0;
line[x][i]=false;
lis[y][i]=false;
grid[(x-1)/3*3+(y-1)/3+1][i]=false;
}
}
}
}
int main()
{
for(int i=1;i<=9;i++)
{
for(int j=1;j<=9;j++)
{
cin>>a[i][j];
if(a[i][j]>0)
{
line[i][a[i][j]]=true;
lis[j][a[i][j]]=true;
grid[(i-1)/3*3+(j-1)/3+1][a[i][j]]=true;
}
}
}
dfs(1,1);
}
有任何疑问欢迎评论哦虽然我真的很菜