#include <iostream> using namespace std; const int N = 110; const int INF = 0x3f3f3f3f; const int MOD = 100000; int n, m; int path[N][N]; int p[N], vis[N]; void init(int n) { for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) path[i][j] = INF; for(int i = 0; i < n; i++) { p[i] = i; vis[i] = 0; } } int find(int x) { if(x != p[x]) p[x] = find(p[x]); return p[x]; } int main() { while(cin >> n >> m) { int from, to; init(n); int dis = 1; for(int i = 0; i < m; i++) { cin >> from >> to; int x = find(from); int y = find(to); if(x != y) //如果已在同一个连通分支,则不用更新距离,因为2^k > 2^k-1 + 2^k-1 ... + 1 { p[x] = y; path[from][to] = path[to][from] = dis; } dis *= 2; dis %= MOD; } vis[0] = 1; int min_dis, min_node; //方法一 // for(int k = 0; k < n; k++) //Floyd 写起来简单,就是时间复杂度高 // for(int i = 0; i < n; i++) // for(int j = 0; j < n; j++) // path[i][j] = min(path[i][j], path[i][k] + path[k][j]); //方法二 for(int i = 0; i < n; i++) //Floyd的优化 { min_dis = 1111111; min_node = 0; for(int j = 1; j < n; j++) { if(!vis[j] && min_dis > path[0][j]) { min_node = j; min_dis = path[0][j]; } } vis[min_node] = 1; for(int j = 1; j < n; j++) { if(!vis[j] && path[0][j] > path[0][min_node] + path[min_node][j]) path[0][j] = path[0][min_node] + path[min_node][j]; } } for(int i = 1; i < n; i++) if(path[0][i] == INF) puts("-1"); else cout << path[0][i] % MOD << endl; } }