A.全 1 子矩阵
题意:
给出一个n×m的矩阵,该矩阵是否存在有且仅有一个全为1的子矩阵
solution:
输入记录第一个为1的下标(x1,y1),从后往前遍历记录最后一个为1的下标(x2,y2),将俩个下标记为左上角和右下角,只需查找这个矩阵是否全为1,并且1的个数等于n×m的矩阵的1的个数
B.组合数
题意:
solution:
题目用c++或者java都行,但是java比较慢,用c++的long double也能过
这是c++的做法:
#include <bits/stdc++.h>
using namespace std;
#define ll unsigned long long
ll inf = 1e18;
ll n , k , i;
int main()
{
while(~scanf("%lld%lld",&n,&k))
{
k = min(k, n-k);
long double ans = 1;
for(i=1;i<=k;i++)
{
ans = ans*(n-i+1)/i;
if(ans > inf)
break;
}
if(ans > inf){
printf("%lld\n",inf);
continue ;
}
printf("%lld\n",(long long)ans);
}
return 0;
}这是java的做法:
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
BigInteger ans1 = new BigInteger("1000000000000000000");
BigInteger one = new BigInteger("1");
while(input.hasNext())
{
int n = input.nextInt();
int k = input.nextInt();
BigInteger nn = BigInteger.valueOf(n);
if(n - k < k)
k = n - k;
int flag = 0;
BigInteger ans = new BigInteger("1");
for(long i=1;i<=k;i++)
{
BigInteger ii = BigInteger.valueOf(i);
ans = ans.multiply(nn.subtract(ii).add(one));
ans = ans.divide(ii);
if(ans.compareTo(ans1) == 1) {
flag = 1;
break;
}
}
if(flag == 1){
System.out.println(ans1);
continue ;
}
System.out.println(ans);
}
}
}E.Numbers
题意:
给出一个字符串,问你是否能将这个字符串拆成每个部分的数字都是[0,99]范围内的数字并且不重复,输出有多少种方案
solution:
深搜
#include <bits/stdc++.h>
using namespace std;
#define ll unsigned long long
int a[55],ans = 0,n;
int flag[105];
void dfs(int pos)
{
if(pos >= n + 1){
ans++;
return ;
}
if(pos <= n){
int k = a[pos];
if(flag[k] == 0){
//cout<<k<<endl;
flag[k] = 1;
dfs(pos+1);
flag[k] = 0;
}
}
if(pos + 1 <= n){
int k = a[pos]*10 + a[pos + 1];
if(flag[k] == 0 && k >= 10){
//cout<<k<<endl;
flag[k] = 1;
dfs(pos+2);
flag[k] = 0;
}
}
return ;
}
int main()
{
string s;
while(cin>>s)
{
ans = 0;
memset(flag,0,sizeof(flag));
n = s.length();
for(int i=1;i<=n;i++)
{
a[i] = s[i-1]-'0';
}
dfs(1);
cout<<ans<<endl;
}
return 0;
}

京公网安备 11010502036488号