在计算机中,线程是cpu执行的基本单位,可以通过创建线程来执行不同的任务,多线程的出现使得计算机CPU利用率提高了很多,尤其是当今多核CPU的广泛应用更是需要多线程。但是线程也是系统资源,在一个并发系统中,如果通过使用不断创建线程的方式来执行任务,那这个系统很快会因为创建过多线程导致内存溢出进而使系统崩溃,而且线程创建也是需要消耗不少时间,以这种方式来执行任务,不但不会发挥多线程的优势,还会降低系统响应速度。有没有一种方法能避免以上问题?
就跟数据库连接池一样,线程可不可以有对应的线程池来管理线程,答案是有的,在JUC包下提供了很多线程池的实现类,这些类可以用于管理线程。
线程池是Java中常用的并发框架,几乎所有异步处理或者并发执行任务的程序中都会用到线程池。
使用线程池有诸多好处:
1. 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
2. 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
3. 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控
要发挥线程池强大的功能,需要理解线程池工作原理及其实现。

线程池实现原理

当向线程池提交一个任务之后,线程池根据下图的流程来处理任务
线程池工作原理

当提交一个新任务到线程池时,线程池的处理流程如下。

  1. 线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作
    线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程。
  2. 线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这
    个工作队列里。如果工作队列满了,则进入下个流程。
  3. 线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

线程池ThreadPoolExecutor执行execute()方法如下所示
ThreadPoolExecutor执行execute()

ThreadPoolExecutor执行execute方法分下面4种情况。

  1. 如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(执行这一步骤需要获取全局锁)。
  2. 如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
  3. 如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
  4. 如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法。

ThreadPoolExecutor的excute方法尽可能的避免获取全局锁,获取锁的过程开销很大,而且线程也是系统资源,创建线程也会有不小的开销,在ThreadPoolExecutor完成预热之后(当前运行的线程数大于等于corePoolSize),几乎所有的execute()方法调用都是执行步骤2,而步骤2不需要获取全局锁。这种设计思路能很大的提高线程池的响应速度。

来看看ThreadPoolExecutor的源码实现

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        // 如果线程数小于基本线程数,则创建线程并执行当前任务
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最  大允许的线程数量, 则创建一个线程执行任务。
        else if (!addWorker(command, false))
            reject(command);
    }

工作线程:线程池创建线程时,会将线程封装成工作线程Worker,Worker在执行完任务后,还会循环获取工作队列里的任务来执行。
工作线程run方法源码如下:

private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
    public void run() {
        runWorker(this);
    }
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
}

run方法执行任务的过程如下图
run

线程池中的线程执行任务分两种情况:

  1. 在execute()方法中创建一个线程时,会让这个线程执行当前任务。
  2. 这个线程执行完上图的任务后,会反复从BlockingQueue获取任务来执行。

线程池的使用

1.创建线程池

可以通过ThreadPoolExecutor创建线程池对象
创建一个线程池时需要输入几个参数:

  1. corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有基本线程。

  2. runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。

    ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按FIFO(先进先出)原则对元素进行排序。

    LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。

    SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于Linked-BlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。

    PriorityBlockingQueue:一个具有优先级的无限阻塞队列。

  3. maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是,如果使用了无界的任务队列这个参数就没什么效果。

  4. ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。使用开源框架guava提供的ThreadFactoryBuilder可以快速给线程池里的线程设置有意义的名字.

  5. RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。在JDK 1.5中Java线程池框架提供了以下4种策略。

AbortPolicy:直接抛出异常。
CallerRunsPolicy:只用调用者所在线程来运行任务。
DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
DiscardPolicy:不处理,丢弃掉。

2.向线程池提交任务

可以使用两个方法向线程池提交任务,分别为execute()和submit()方法。
execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。
submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个
future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方***阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。

3.关闭线程池

可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。
只要调用了这两个关闭方法中的任意一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方***返回true

4.合理使用线程池

性质不同的任务可以用不同规模的线程池分开处理。

CPU密集型任务应配置尽可能小的线程,如配置N cpu +1个线程的线程池。由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*N cpu 。混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先执行。


参考书籍:《Java并发编程艺术》