有一个N*M大小的迷宫矩阵,迷宫的每一个格子有一个数值(a[i][j] <10^9)。小猿在迷宫中发现,它只能朝着上下左右四个方向的相邻格子前进,并且只能进入比当前位置数值更大的格子。但是小猿有个紧急呼救按钮,他可以通过按下按钮,强行进入到不满足数值大小要求的相邻格子,可惜这个按钮只能按K次。请问小猿从这个迷宫任选一个格子出发,在紧急呼救按钮的帮助下,最多能走多少步(开始位置计入步数,即站在起点是步数为1)。
解法:深度优先遍历+动态规划
时间复杂度,只能通过80%
import java.util.*; public class Main{ public static void main(String[] args){ Scanner input; int N, M, K, i, j; int[][] grid; input = new Scanner(System.in); while(input.hasNext()){ N = input.nextInt(); M = input.nextInt(); K = input.nextInt(); grid = new int[N][M]; for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ grid[i][j] = input.nextInt(); } } System.out.println(new Main().Solution(grid, N, M, K + 1)); } } private int Solution(int[][] grid, int N, int M, int K){ int[][][] dp; int i, j, k, ans; dp = new int[N][M][K+1]; for(k = 1; k <= K; k++){ for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ if(dp[i][j][k] == 0) dfs(dp, i, j, k, grid, N, M, grid[i][j] - 1); } } } ans = 0; for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ ans = ans > dp[i][j][K] ? ans : dp[i][j][K]; } } return ans; } private int dfs(int[][][] dp, int i, int j, int k, int[][] grid, int N, int M, int s){ int ans, next; if(i < 0 || i == N || j < 0 || j == M) return 0; if(grid[i][j] <= s) return dp[i][j][k-1]; if(dp[i][j][k] != 0) return dp[i][j][k]; ans = 0; next = dfs(dp, i + 1, j, k, grid, N, M, grid[i][j]); ans = ans > next ? ans : next; next = dfs(dp, i - 1, j, k, grid, N, M, grid[i][j]); ans = ans > next ? ans : next; next = dfs(dp, i, j + 1, k, grid, N, M, grid[i][j]); ans = ans > next ? ans : next; next = dfs(dp, i, j - 1, k, grid, N, M, grid[i][j]); ans = ans > next ? ans : next; dp[i][j][k] = ++ans; return dp[i][j][k]; } }
迭代
import java.util.*; public class Main{ public static void main(String[] args){ Scanner input; int N, M, K, i, j; int[][] grid; input = new Scanner(System.in); while(input.hasNext()){ N = input.nextInt(); M = input.nextInt(); K = input.nextInt(); grid = new int[N][M]; for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ grid[i][j] = input.nextInt(); } } System.out.println(new Main().Solution(grid, K + 1, N, M)); } } private int Solution(int[][] grid, int K, int N, int M){ int[][][] dp; int[][] deltas; int[] cursor; int i, j, k, n, m, max, ans; Stack<int[]> stack; dp = new int[N][M][K+1]; stack = new Stack<>(); deltas = new int[][]{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; cursor = null; for(k = 1; k <= K; k++){ for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ if(dp[i][j][k] != 0) continue; stack.push(new int[]{i, j}); while(!stack.isEmpty()){ while(cursor != stack.peek()){ cursor = stack.peek(); for(int[] delta : deltas){ n = cursor[0] + delta[0]; m = cursor[1] + delta[1]; if(n < 0 || n == N || m < 0 || m == M) continue; if(grid[n][m] > grid[cursor[0]][cursor[1]] && dp[n][m][k] == 0){ stack.push(new int[]{n, m}); } } } cursor = stack.pop(); max = 0; for(int[] delta : deltas){ n = cursor[0] + delta[0]; m = cursor[1] + delta[1]; if(n < 0 || n == N || m < 0 || m == M) continue; max = Math.max(max, grid[n][m] > grid[cursor[0]][cursor[1]] ? dp[n][m][k] : dp[n][m][k-1]); } dp[cursor[0]][cursor[1]][k] = max + 1; } } } } ans = 0; for(i = 0; i < N; i++){ for(j = 0; j < M; j++){ ans = Math.max(ans, dp[i][j][K]); } } return ans; } }