动态规划二分优化
时间复杂度
把arr[]向右偏移为下标从1开始的a[]g[i]为长度为i的最长上升子序列的最小的末尾元素的下标last[i]表示以第i个元素结束的最长上升子序列的上一个元素的下标
const int N = 100010;
class Solution {
public:
/**
* retrun the longest increasing subsequence
* @param arr int整型vector the array
* @return int整型vector
*/
int g[N], a[N], last[N];
vector<int> LIS(vector<int>& arr) {
memset(g, 0, sizeof g);
int n = arr.size(), len = 0;
a[0] = -1;
for(int i = 1; i <= n; i ++)
{
a[i] = arr[i - 1];
int l = 0, r = len;
while(l < r)
{
int mid = l + r + 1 >> 1;
if(a[i] > a[g[mid]]) l = mid;
else r = mid - 1;
}
last[i] = g[l];
g[l + 1] = i;
if(l + 1 > len) len ++;
//for(int i = 1; i <= len; i ++) printf("%d ", a[g[i]]); puts("");
}
vector<int> res;
for(int i = g[len]; i; i = last[i]) res.push_back(a[i]);
reverse(res.begin(), res.end());
return res;
}
};
京公网安备 11010502036488号