#include <functional> #include <vector> class Solution { public: /** * longest common subsequence * @param s1 string字符串 the string * @param s2 string字符串 the string * @return string字符串 */ string LCS(string s1, string s2) { int n1 = s1.length(); int n2 = s2.length(); vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1)); vector<vector<int>> b(n1 + 1, vector<int>(n2 + 1)); for (int i = 1; i <= n1; ++i) { for (int j = 1; j <= n2; ++j) { if (s1[i - 1] == s2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; b[i][j] = 1; } else if (dp[i - 1][j] > dp[i][j - 1]) { dp[i][j] = dp[i - 1][j]; b[i][j] = 2; } else { dp[i][j] = dp[i][j - 1]; b[i][j] = 3; } } } function<string(int, int)> getres = [&](int i, int j) -> string { if (i == 0 || j == 0) { return ""; } string res; switch (b[i][j]) { case 1: { res = getres(i - 1, j - 1) + s1[i - 1]; } break; case 2: { res = getres(i - 1, j); } break; case 3: { res = getres(i, j - 1); } break; } return res; }; return getres(n1, n2) == ""? "-1": getres(n1, n2); } };
思路:动态规划。
在求最长公共子序列时,记录子序列扩展的方向,以在找到公共子序列最长的长度后,反向求出该子序列。