题目链接:codeforces 1433G

思路:

首先预处理在没有免费边情况下的最短路,再暴力枚举边即可。

假设当先线路为 j,对于边 (a, b) ,它有两种情况:

  1. 免费后不在最短路上,结果是 f[j.first][j.second]
  2. 免费后在最短路上,因为这条边的价值改变了,可能最短路会变,所以要讨论,结果是 min(f[j.second][a]+f[j.first][b], f[j.first][a]+f[j.second][b])

时间复杂度为 O ( m ∗ k + n ∗ m ∗ log ⁡ n ) O(m*k+n*m*\log n) O(mk+nmlogn)

参考代码:

#include <iostream>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
typedef long  long ll;
typedef pair<ll, ll> PII;
const int N = 1010;
int n, m, k, sta;
struct Edge {
   
    int v, w;
};
vector<Edge> g[N];
bool vis[N];
int dis[N];
int f[N][N];
void dijstra() {
   
    int s = sta;
    memset(vis, 0, sizeof(vis));
    memset(dis, 0x3f, sizeof(dis));
    dis[s] = 0;
    priority_queue<PII, vector<PII>, greater<PII> > q;
    q.push({
   dis[s], s});
    while (!q.empty()) {
   
        PII e = q.top(); q.pop();
        int v = e.second;
        if (vis[v]) continue;
        vis[v] = 1;
        for (int i = 0; i < g[v].size(); i++) {
   
            Edge e = g[v][i];
            if (dis[e.v] > dis[v] + e.w) {
   
                dis[e.v] = dis[v] + e.w;
                q.push({
   dis[e.v], e.v});
            }
        }
    }
    for (int i = 1; i <= n; i++) {
   
        f[s][i] = dis[i];
    }
}
int main() {
   
    cin >> n >> m >> k;
    vector<PII> edge;
    for (int i = 1; i <= m; i++) {
   
        int u, v, w; cin >> u >> v >> w;
        g[u].push_back({
   v, w});
        g[v].push_back({
   u, w});
        edge.push_back({
   u ,v});
    }
    vector<PII> v;
    for (int i = 1; i <= k; i++) {
   
        int a, b; cin >> a >> b;
        v.push_back({
   a ,b});
    }
    for (int i = 1; i <= n; i++) {
   
        sta = i;
        dijstra();
    }
    int sum = 0x3f3f3f3f;
    for (auto i : edge) {
   
        int a = i.first, b = i.second;
        int ans = 0;
        for (auto j : v) {
   
            ans += min(f[j.first][j.second], min(f[j.first][a] + f[j.second][b], f[j.second][a] + f[j.first][b]));
        }
        sum = min(ans, sum);
    }
    cout << sum << endl;
    return 0;
}