ConcurrentHashMap 的 size 方法原理分析

面试题

这是同一个面试的时候别人问的,我只是记得看过,在concurrenthashmap中会统计多次,当时就说会统计两次进行比较,人家接着问为啥。。。我傻了一下,这不是明摆着两次统计的中间有新的变化了,会导致统计不准确吗?当时也不知道说啥好,以为他有新的点,就说不知道。面试时很多问题其实冷静下来想一下,可以更进一步的,有时候其实也是怕他更进一步后下面的挖坑挖大了。

下面具体说一下这个size方法:
代码就不贴了。只说原理。

众所周知,concurrenthashmap有很多歌segments,首先遍历segments将每个segment的count加起来作为整个concurrenthashMap的size。如果没有并发的情况下这自然就可以了,但这是多线程的,如果前脚统计完后脚有变化了,这就不准确了,源码中引入了,modCount和两次比较来实现size的确认。具体过程是:

1.进行第一遍遍历segments数组,将每个segemnt的count加起来作为总数,期间把每个segment的modCount加起来sum作为结果是否被修改的判断依据。
这里需要提一下modCount,这个是当segment有任何操作都会进行一次增量操作,代表的是对Segment中元素的数量造成影响的操作的次数,这个值只增不减!!!!只增不减很重要,这样就不会出现一个segment+1,导致modcount+1,而另一个segment-1,即modcount-1 ,从而在统计所有的时候modcount没有变化。

2.size操作就是遍历了两次所有的Segments,每次记录Segment的modCount值,然后将两次的modCount进行比较,如果相同,则表示期间没有发生过写入操作,就将原先遍历的结果返回,如果不相同,则把这个过程再重复做一次,如果再不相同,则就需要将所有的Segment都锁住,然后一个一个遍历了。

3.如果经判断发现两次统计出的modCount并不一致,那就如上所说,要重新启用全部segment加锁的方式来进行count的获取和统计了,这样在此期间每个segement都被锁住,无法进行其他操作,统计出的count自然很准确。

而之所以之所以要先不加锁进行判断,道理很明显,就是不希望因为size操作获取这么多锁,因为获取锁不光占用资源,也会影响其他线程对ConcurrentHash的使用,影响并发情况下程序执行的效率。使用锁要谨慎!

原理大概就是这样的,具体的代码可以去看源码,而且源码1.7和1.8有差别。。。有空再贴出来比较比较吧。
————————————————

实际代码

在 JDK1.7 版本中,ConcurrentHashMap 的数据结构是由一个 Segment 数组和多个 HashEntry 组成。简单理解就是ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 Segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

JDK1.8 的实现已经摒弃了 Segment 的概念,而是直接用 Node 数组 + 链表 + 红黑树的数据结构来实现,并发控制使用 Synchronized 和 CAS 来操作,整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本。 通过 HashMap 查找的时候,根据 hash 值能够快速定位到数组的具体下标,如果发生 Hash 碰撞,需要顺着链表一个个比较下去才能找到我们需要的,时间复杂度取决于链表的长度,为 O(n)。为了降低这部分的开销,在 Java8 中,当链表中的元素超过了 8 个以后,会将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。

 

如何计算 ConcurrentHashMap Size
由上面分析可知,ConcurrentHashMap 更适合作为线程安全的 Map。在实际的项目过程中,我们通常需要获取集合类的长度, 那么计算 ConcurrentHashMap 的元素大小就是一个有趣的问题,因为他是并发操作的,就是在你计算 size 的时候,它还在并发的插入数据,可能会导致你计算出来的 size 和你实际的 size 有差距。本文主要分析下 JDK1.8 的实现。 关于 JDK1.7 简单提一下。 

 

在 JDK1.7 中,第一种方案他会使用不加锁的模式去尝试多次计算 ConcurrentHashMap 的 size,最多三次,比较前后两次计算的结果,结果一致就认为当前没有元素加入,计算的结果是准确的。 第二种方案是如果第一种方案不符合,他就会给每个 Segment 加上锁,然后计算 ConcurrentHashMap 的 size 返回。其源码实现: 

 JDK1.8 实现相比 JDK 1.7 简单很多,只有一种方案,我们直接看 size() 代码:

public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n);
}

最大返回 int 最大值,但是这个 Map 的长度是有可能超过 int 最大值的,所以 JDK 8 增了 mappingCount 方法。代码如下:

public long mappingCount() {
    long n = sumCount();
    return (n < 0L) ? 0L : n; // ignore transient negative values
}

相比较 size 方法,mappingCount 方法的返回值是 long 类型。所以不必限制最大值必须是 Integer.MAX_VALUE。而 JDK 推荐使用这个方法。但这个返回值依然不一定绝对准确。

从这两个方法中可以看出,sumCount 方法是核心。

 

sumCount 方法实现

代码如下:

final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

上面的方法逻辑:当 counterCells 不是 null,就遍历元素,并和 baseCount 累加。

两个属性 : baseCount 和 counterCells。

先看 baseCount。

    /**
     * Base counter value, used mainly when there is no contention,
     * but also as a fallback during table initialization
     * races. Updated via CAS.
     * 当没有争用时,使用这个变量计数。
     */
    private transient volatile long baseCount;

一个 volatile 的变量,在 addCount 方法中会使用它,而 addCount 方法在 put 结束后会调用。在 addCount 方法中,会对这个变量做 CAS 加法。

但是如果并发导致 CAS 失败了,怎么办呢?使用 counterCells。

如果上面 CAS 失败了,在 fullAddCount 方法中,会继续死循环操作,直到成功。

而这个 CounterCell 类又是上面鬼呢?

// 一种用于分配计数的填充单元。改编自LongAdder和Striped64。请查看他们的内部文档进行解释。
@sun.misc.Contended 
static final class CounterCell {
    volatile long value;
    CounterCell(long x) { value = x; }
}

 

使用了 @sun.misc.Contended 标记的类,内部一个 volatile 变量。注释说,改编自LongAdder和Striped64,关于这两个类,请看 Java8 Striped64 和 LongAdder

而关于这个注解,有必要解释一下。这个注解标识着这个类防止需要防止 "伪共享".

说说伪共享。引用 一下别人的说法:

避免伪共享(false sharing)。 先引用个伪共享的解释: 缓存系统中是以缓存行(cache line)为单位存储的。缓存行是2的整数幂个连续字节, 一般为32-256个字节。最常见的缓存行大小是64个字节。当多线程修改互相独立的变量时, 如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。

所以伪共享对性能危害极大。

JDK 8 版本之前没有这个注解,Doug Lea 使用拼接来解决这个问题,把缓存行加满,让缓存之间的修改互不影响。

在我的机器上测试,加和不加这个注解的性能差距达到了 5 倍。

总结

JDK 8 推荐使用mappingCount 方法,因为这个方法的返回值是 long 类型,不会因为 size 方法是 int 类型限制最大值(size 方法是接口定义的,不能修改)。

在没有并发的情况下,使用一个 baseCount volatile 变量就足够了,当并发的时候,CAS 修改 baseCount 失败后,就会使用 CounterCell 类了,会创建一个这个对象,通常对象的 volatile value 属性是 1。在计算 size 的时候,会将 baseCount 和 CounterCell 数组中的元素的 value 累加,得到总的大小,但这个数字仍旧可能是不准确的。

还有一个需要注意的地方就是,这个 CounterCell 类使用了 @sun.misc.Contended 注解标识,这个注解是防止伪共享的。是 1.8 新增的。使用时,需要加上 -XX:-RestrictContended 参数。