题意:
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
求出F(n) 有几个元素
也就是要你求 1~n 有几对 a与b 互质
这是一道欧拉函数的裸题
AC代码:
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#define ll long long//筛法欧拉函数
using namespace std;
const int maxn = 1000000 + 5;
int phi[maxn];
void init() {//打表,phi[n],比n小,且与n互质的正整数个数
memset(phi, 0, sizeof(phi));
phi[1] = 1;
for(int i = 2; i <= 1000000; i++){
if(!phi[i]){
for(int j = i; j <= 1000000; j += i){
if(!phi[j]){
phi[j] = j;
}
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
int main() {
int n;
init();
while(~scanf("%d", &n)){
if(n == 0){
break;
}
ll num = 0;
for(int i = 2; i <= n; i++){
num += phi[i];
}
printf("%lld\n",num);
}
return 0;
}