思路
将数组复制一倍衔接在最后,那么答案就是
用单调队列维护一下的最大值即可.注意及时排除已经不满足的状态.
复杂度为,常数也比较优秀.
代码
using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; const int MAXN = 2e6; int N, a[MAXN], q[MAXN], hd, tl, ans; signed main(){ t_bg = clock(); read(N); fp( i, 1, N ) read(a[i]), a[i + N] = a[i]; q[hd = tl = 1] = 1; fp( i, 2, N << 1 ){ while( hd <= tl && ( ( i - q[hd] ) << 1 ) > N ) ++hd; cmax( ans, a[q[hd]] + a[i] + i - q[hd] ); while( hd <= tl && a[i] - i >= a[q[tl]] - q[tl] ) --tl; q[++tl] = i; } printf( "%d\n", ans ); t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }