1001  A Math Problem


送分题,问有多少个数 k^k<=n。打表即可。

#include<bits/stdc++.h>
using namespace std;

long long a[16]={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};

int main(){
	for(int i=1;i<=15;i++){
		for(int j=1;j<=i;j++){
			a[i]*=i;
		}	
	}
//	long long ans=1;
//	for(int i=1;i<=15;i++)ans*=15;
//	cout<<ans<<endl;
//	cout<<pow(15,15)<<endl;
//  long long 不宜用pow 
	long long n;
	while(cin>>n){
		if(n>=437893890380859375)cout<<"15"<<endl;
		else	cout<<upper_bound(a,a+15,n)-a-1<<endl;
	}
	return 0;
}

1004 Covering

dp+矩阵快速幂。或者直接线性递推前10项,用杜教模版暴力杠。

如果我们考虑状态压缩DP,用0-15表示当前列的被覆盖的情况,可以压缩对称状态。并统计方案数,时间复杂度O(n)。然后利用矩阵快速幂加速即可,矩阵仅需6*6。时间复杂度O(216logn)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (ll i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((ll)(x).size())
typedef long long ll;
typedef vector<ll> VI;
typedef pair<ll,ll> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head

ll _;
ll n;
namespace linear_seq {
    const ll N=1e7;
    ll res[N],base[N],_c[N],_md[N];

    vector<ll> Md;
    void mul(ll *a,ll *b,ll k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (ll i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    ll solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
//        printf("%d\n",SZ(b));
        ll ans=0,pnt=0;
        ll k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (ll p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (ll i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        ll L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    ll gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main()
{
    while(~scanf("%lld",&n))
        printf("%d\n",linear_seq::gao(VI{1,5,11,36,95,281,781,2245,6336,18061},n-1));
    return 0;
}


或者快速幂做法:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <set>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
struct matrix {
	ll m[4][4];
};
matrix multi(matrix a, matrix b) {
	matrix tmp;
	for(int i = 0; i < 4; i++) {
		for(int j = 0; j < 4; j++) {
			tmp.m[i][j] = 0;

			for(int k = 0; k < 4; k++) {
				tmp.m[i][j] = (tmp.m[i][j] % mod + ((a.m[i][k] % mod) * (b.m[k][j] % mod)) % mod) % mod;
			}
		}
	}
	return tmp;
}
void print(matrix a){
	for(int i = 0; i < 4; i++) {
		for(int j = 0; j < 4; j++) {
			cout<<a.m[i][j]<<" ";
		}
		cout<<endl;
	}	
	puts("");
}
matrix fill(matrix &a, int x) {
	for(int i = 0; i < 4; i++) {
		for(int j = 0; j < 4; j++) {
			a.m[i][j] = x;
		}
	}
//	print(a);
	return a;
}

matrix quick_mod(ll n) {
	matrix base, ans;
	fill(ans, 0);
	fill(base, 0);

//	print(ans);
	
	base.m[0][0] = 1, base.m[0][1] = 5 ,base.m[0][2] = 1, base.m[0][3] =-1;
	base.m[1][0] = base.m[2][1] = base.m[3][2] = 1;
	ans.m[0][0] = ans.m[1][1] = ans.m[2][2] = ans.m[3][3] = 1;
	while(n) {
		if(n & 1) ans = multi(ans, base);
		base = multi(base, base);
		n >>= 1;
	}
	return ans;

}
int main() {
	ll n;
	while(~scanf("%lld", &n)) {
		
		matrix save = quick_mod(n - 1);
		matrix ans;
		
		fill(ans, 0);
		
		ans.m[0][0]=36;
		ans.m[1][0]=11;
		ans.m[2][0]=5;
		ans.m[3][0]=1;
		
//		print(ans);
		ans = multi(save, ans);
		
//		print(ans);
		ll res = (ans.m[3][0] % mod + mod) % mod;
		printf("%lld\n", res);
	}

}


1005 Cs Course

统计前n个数的and or xor,只需统计每个数的每个位置上的01的个数。有0的and肯定是0,有1的or肯定是1,xor就是用了性质:x^b^b=x。

#include<bits/stdc++.h>
using namespace std;

int a[100005],b[100005];

int main(){
	int n,p;
	while(~scanf("%d%d",&n,&p)){
		memset(b,0,sizeof(b)); 
		int ans_and=0xffffffff,ans_or=0,ans_xor=0;
				
//		cout<<"1 "<<ans_and<<" "<<ans_or<<" "<<ans_xor<<endl;
		
		for(int i=1;i<=n;i++){
			scanf("%d",&a[i]);
			int x = a[i];
			ans_and = (ans_and&a[i]);
			ans_or  = (ans_or|a[i]);
			ans_xor = (ans_xor^a[i]); 
//			cout<<i<<" "<<ans_and<<" "<<ans_or<<" "<<ans_xor<<endl;
			for(int j=0;x;j++,x>>=1)  
                b[j]+=x%2;  
		}
		
		for(int i=1;i<=p;i++){
			int co;
			scanf("%d",&co);	
			int temp = a[co];
			int A = ans_and , O = ans_or , X = ans_xor;
			X=X^temp;
			for(int j=0;j<=30;j++,temp>>=1)  
            {  
                if(b[j]==n-1&&temp%2==0)A+=(1<<j);  
                if(b[j]==1  &&temp%2   )O-=(1<<j);  
            }  
			printf("%d %d %d\n",A,O,X);
		}		
	}
	return 0;
}

 1007 Duizi and Shunzi

签到题
排序,从小到大枚举每个整数。
对于每个整数{
当前数能作为某个顺子的最大值,则取顺子;
否则能取对子,则取对子。