解法一:
解法二:
所以可以通过积性函数的性质
可以化简得到:
#include<bits/stdc++.h> #define me(a,x) memset(a,x,sizeof(a)) #define sc scanf #define itn int #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); #define STR clock_t startTime = clock(); #define END clock_t endTime = clock();cout << double(endTime - startTime) / CLOCKS_PER_SEC *1000<< "ms" << endl; using namespace std; const int N=5e5+5; const long long mod=1e9+7; const long long mod2=998244353; const int oo=0x7fffffff; const int sup=0x80000000; typedef long long ll; typedef unsigned long long ull; template <typename it>void db(it *begin,it *end){while(begin!=end)cout<<(*begin++)<<" ";puts("");} template <typename it> string to_str(it n){string s="";while(n)s+=n%10+'0',n/=10;reverse(s.begin(),s.end());return s;} template <typename it>int o(it a){cout<<a<<endl;return 0;} ll mul(ll a,ll b,ll c){ll ans=0;for(;b;b>>=1,a=(a+a)%c)if(b&1)ans=(ans+a)%c;return ans;} ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=mul(a,a,c))if(b&1)ans=mul(ans,a,c);return ans;} void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;} int prime[N],tot=0; bool vis[N]={0}; void pre(){ for(int i=2;i<N;i++){ if(!vis[i])prime[++tot]=i; for(int j=1;j<=tot&&i*prime[j]<N;j++){ vis[i*prime[j]]=1; if(i%prime[j]==0)break; } } } ll qk(ll a,ll b){ ll ans=1; for(;b;b>>=1,a=a*a)if(b&1)ans=ans*a; return ans; } int main(){ pre(); int t;cin>>t; while(t--){ int n;sc("%d",&n); ull ans=1,res=1; for(int i=1;i<=tot&&1ll*prime[i]*prime[i]<=n;i++){ if(n%prime[i]==0){ int k=0; while(n%prime[i]==0)n/=prime[i],k++; ans*=1+1ull*prime[i]*prime[i]*((qk(prime[i],2*k)-1)/(prime[i]*prime[i]-1)); res*=1ull*(k+1)*qk(prime[i],k); } } if(n>1)ans*=1+1ull*n*n,res*=2ull*n; printf("%llu\n",ans-res); } }