NC22598 Rinne Loves Edges
题目地址:
基本思路:
其实我没有看清楚条件QAQ这个图居然是一棵树(居然只在数据范围里写明了),那树形dp可以写而且更快,不过这里还是提供最小割的写法,毕竟这个无脑下面两个解法都提供了;
解法一:
- 由于我们知道这个图实际上是一个树,所以我们把s当做它的根然后我们要使每个叶子节点都不能到达根;
- 设f[u]表示使叶子节点不能到以u为根的树需要删除的最小边的代价;
- 那么可以得到递推式
f[u] += min(f[to], edge[i].val)
,将叶子节点设为INF,就能递推出答案; - 复杂度:
O(n)
跑了50多ms。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define int long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 1e18 inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1e5 + 10; struct Edge{ int to,next,val; }edge[maxn]; int n,m,s; int cnt = 0,head[maxn],f[maxn],du[maxn]; void add_edge(int u,int v,int w){ edge[++cnt].next = head[u]; edge[cnt].to = v; edge[cnt].val = w; head[u] = cnt; } void dfs(int u,int p) { if (du[u] == 1 && u != s) {//为叶子节点; f[u] = INF;//设为INF; return; } for (int i = head[u]; i != -1; i = edge[i].next) { int to = edge[i].to; if (to != p) { dfs(to, u); f[u] += min(f[to], edge[i].val);//递推; } } } signed main() { IO; cin >> n >> m >> s; mset(head, -1); rep(i, 1, m) { int u, v, w; cin >> u >> v >> w; add_edge(u, v, w); add_edge(v, u, w); du[u]++, du[v]++; } dfs(s, 0); cout << f[s] << endl; return 0; }
解法二:
- 看到的第一眼应该就能想到最小割应该是能写(但Dinic算法复杂度可能有点玄学),没学过最大流最小割的同学可以去先学习一下;
- 我们找一个超级源点t连接所有度为1(不包括s)的顶点并将容量设为INF,然后根据最大流最小割原理 t->s 跑一遍最大流Dinic算法就行了,这里的Dinic算法用的白书上的模板。
- 也只跑了250多ms,理论上最慢复杂度
O(mn^2)
不过树形图肯定跑不到这么慢。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define int long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 1e18 inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1e5 + 10; struct edge{ int to,cap,rev ;}; vector<edge> G[maxn]; int level[maxn],iter[maxn]; void add_edge(int from,int to,int cap){ G[from].push_back((edge){to,cap,G[to].size()}); G[to].push_back((edge){from,0,G[from].size() - 1}); } void bfs(int s){ mset(level,-1); queue<int> que; level[s] = 0; que.push(s); while (!que.empty()){ int v = que.front();que.pop(); for(int i = 0 ; i < G[v].size() ; i++){ edge &e = G[v][i]; if(e.cap > 0 && level[e.to] < 0){ level[e.to] = level[v] + 1; que.push(e.to); } } } } int dfs(int v,int t,int f){ if(v == t) return f; for(int &i = iter[v] ; i < G[v].size() ; i++){ edge &e = G[v][i]; if(e.cap > 0 && level[v] < level[e.to]){ int d = dfs(e.to,t,min(f,e.cap)); if(d > 0){ e.cap -=d; G[e.to][e.rev].cap +=d; return d; } } } return 0; } int max_flow(int s,int t) { int flow = 0; for (;;) { bfs(s); if (level[t] < 0) return flow; mset(iter, 0); int f; while ((f = dfs(s, t, INF)) > 0) { flow += f; } } } int n,m,s,du[maxn]; signed main() { n = read(), m = read(), s = read(); rep(i, 1, m) { int u, v, w; u = read(), v = read(), w = read(); add_edge(u, v, w); add_edge(v, u, w); du[u]++, du[v]++; //记录度; } //注意INF设大一点; rep(i, 1, n) { if (du[i] == 1 && i != s) { add_edge(0, i, INF);//将0作为超级源点; } } int ans = max_flow(0, s); print(ans); return 0; }