i n v [ i ] inv[i] inv[i]表示 i i i m m m的逆元
t = m / i , k = m t=m/i,k=m%i t=m/i,k=m
t i + k = 0 ( m o d m ) t*i+k=0(mod m) ti+k=0(modm)
t i = k ( m o d m ) -t*i=k(mod m) ti=k(modm)
同除以 i k i*k ik
t i n v [ k ] = i n v [ i ] ( m o d m ) -t*inv[k]=inv[i](mod m) tinv[k]=inv[i](modm)
i n v [ i ] = ( m m / i ) ( i n v [ m % i ] ) % m inv[i]=(m-m/i)*(inv[m\%i])\%m inv[i]=(mm/i)(inv[m%i])%m