题解:
树形dp
对于每棵子树,有两种可能
1.不删除这条边,两个点相连
2.删除这条边,两个点各自独立
定义dp[i][j] 表示 i 结点所在的连通块中节点数为 j 的方案数是多少
/*Keep on going Never give up*/ //#pragma GCC optimize(3,"Ofast","inline") #include <iostream> #include <cstdio> #include <stdlib.h> #include <cstring> #include <cmath> #include <math.h> #include <string> #include<string.h> #include <list> #include <set> #include <unordered_map> #include <queue> #include <stack> #include <algorithm> #include <stdlib.h> #include <vector> #include <cctype> #include<iomanip> #define int long long #define endl '\n' using namespace std; const int maxn = 2010; const int MaxN = 0x3f3f3f3f; const int MinN = 0xc0c0c00c; typedef long long ll; const ll mod= 998244353; using namespace std; int n, kk; vector<int> v[maxn]; ll dp[maxn][maxn]; ll isize[maxn], num[maxn]; inline void add(int x,int y){ v[x].push_back(y); v[y].push_back(x); } void dfs(ll x, ll fa){ dp[x][1]=1; isize[x]=1; for(ll i = 0; i < v[x].size(); i++){ ll to = v[x][i]; if (to == fa) continue; dfs(to, x); for(ll j=1; j <= isize[x]; j++){ for(ll k = 0; k <= isize[to]; k++){ if (j+k > kk) break; num[j+k] += dp[x][j]*dp[to][k]; num[j+k] %= mod; } } isize[x] += isize[to]; for(ll j = 1; j <= isize[x]; j++) dp[x][j] = num[j], num[j] = 0; } for(ll i = 1; i <= kk; i++){ dp[x][0] = (dp[x][0]+dp[x][i])%mod; } } signed main() { cin >> n >> kk; ll x, y; for(ll i = 1; i < n; i++){ cin>>x>>y; add(x,y); } dfs(1, 0); ll ans = 0; for(ll i = 1; i <= kk; i++) ans = (ans+dp[1][i])%mod; cout<<ans<<endl; return 0; }