T组,每组给出一个,求
矩阵快速幂,由第N个状态到第N+1个状态,推出关系矩阵,然后关系矩阵快速幂,再乘以出事矩阵就好了。
由于的最高项为立方,所以需要加上平方项和一次方项和零次方项
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 123456789;
ll len = 6;
struct node
{
ll matrix[6][6];
node()
{
memset(matrix, 0, sizeof matrix);
}
void set(ll a[6][6])
{
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
matrix[i][j] = a[i][j];
}
}
void one()
{
for (int i = 0; i < len; i++)
matrix[i][i] = 1;
}
node operator * (node other)
{
node ans;
for (int i = 0; i < len; i++)
{
for (int j = 0; j < len; j++)
{
for (int k = 0; k < len; k++)
{
ans.matrix[i][j] += matrix[i][k] * other.matrix[k][j] % mod;
ans.matrix[i][j] %= mod;
}
}
}
return ans;
}
};
node power(node a, ll b)
{
node res;
res.one();
while (b)
{
if (b & 1)
res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
int main()
{
//中间矩阵
ll change[6][6] = {
{0,1,0,0,0,0},
{2,1,1,0,0,0},
{0,0,1,3,3,1},
{0,0,0,1,2,1},
{0,0,0,0,1,1},
{0,0,0,0,0,1},
};
//初始矩阵
ll pre[6][6]={
{1,0,0,0,0,0},
{2,0,0,0,0,0},
{27,0,0,0,0,0},
{9,0,0,0,0,0},
{3,0,0,0,0,0},
{1,0,0,0,0,0},
};
node real;
real.set(pre);
node temp;
temp.set(change);
node q1 = power(temp, 1);
node q2 = power(temp, 2);
node q3 = power(temp, 3);
int t;
scanf("%d", &t);
while (t--)
{
ll n;
scanf("%lld", &n);
node ans = power(temp, n - 1) * real;
printf("%lld\n", ans.matrix[0][0]);
}
}