该文章为知识总结的文章,如果是初学者,建议先从专栏学习:JVM专栏
一、简介
Java 虚拟机在执⾏ Java 程序的过程中会把它管理的内存划分成若⼲个不同的数据区域。 JDK. 1.8 和
之前的版本略有不同
jdk1.8之前:
jdk1.8之后:
线程私有的:
- 程序计数器
- 虚拟机栈
- 本地方法栈
线程共享的:
- 堆
- 方法区
- 直接内存 (非运行时数据区的一部分)
二、程序计数器
用来记住下一条指令的执行的地址,可以依次读取指令或者在多线程的时候,记录线程执行的位置,线程切换后,继续执行
是线程私有的,且不会出现内存溢出
程序计数器是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。
另外,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
从上面的介绍中我们知道程序计数器主要有两个作用:
- 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
- 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
注意:程序计数器是唯一一个不会出现 OutOfMemoryError
的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。
三、虚拟机栈
与程序计数器一样,Java 虚拟机栈也是线程私有的
描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的
每个虚拟栈中存放的是栈帧,每个栈帧对应着一次方法的调用,即每个方法需要的内存
方法执行时会入栈,所以栈顶的栈帧是正在执行的方法,方法执行结束或出现异常时,会出栈
当方法出现递归的时候,可能会造成栈帧过多,导致栈溢出
与程序计数器一样,Java 虚拟机栈也是线程私有的,它的生命周期和线程相同,描述的是 Java 方法执行的内存模型,每次方法调用的数据都是通过栈传递的。
Java 内存可以粗糙的区分为堆内存(Heap)和栈内存 (Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。 (实际上,Java 虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息。)
局部变量表主要存放了编译期可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。
Java 虚拟机栈会出现两种错误:StackOverFlowError
和 OutOfMemoryError
。
StackOverFlowError
: 若 Java 虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前 Java 虚拟机栈的最大深度的时候,就抛出 StackOverFlowError 错误。OutOfMemoryError
: 若 Java 虚拟机堆中没有空闲内存,并且垃圾回收器也无法提供更多内存的话。就会抛出 OutOfMemoryError 错误。
Java 虚拟机栈也是线程私有的,每个线程都有各自的 Java 虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。
扩展:那么方法/函数如何调用?
Java 栈可用类比数据结构中栈,Java 栈中保存的主要内容是栈帧,每一次函数调用都会有一个对应的栈帧被压入 Java 栈,每一个函数调用结束后,都会有一个栈帧被弹出。
Java 方法有两种返回方式:
- return 语句。
- 抛出异常。
不管哪种返回方式都会导致栈帧被弹出。
问题辨析
- 垃圾回收是否涉及栈内存?
不需要
每个方法执行后,都会被弹出栈,自动回收掉
- 栈内存分配越大越好吗?
不是
分配的越大,因为物理内存一定,会导致线程变少
分配的更多,只是帮助更多次的递归调用
- 方法内的局部变量是否线程安全?(看这个线程对变量是私有还是共享的)
如果方法内局部变量没有逃离方法的作用访问,它是线程安全的
如果是局部变量引用了对象,并逃离方法的作用范围,需要考虑线程安全
如果变量变成static类型,需要考虑线程安全
四、本地方法栈
和虚拟机栈类似,只是用来存储native方法的栈帧
和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。
方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和 OutOfMemoryError 两种错误。
五、堆
是线程共享的,唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存
从jdk 1.7开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。
由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等
这个是垃圾回收器主要负责回收的区域,当对象过大或者堆存储的对象过多时,就会进行垃圾回收,如果回收失败,最终户出现堆溢出
一个线程出现堆溢出,这个线程就会关闭,并且回收该线程创建的对象,此时JVM还没有关闭;如果其他线程在创建对象时,关闭线程并没有释放掉大量的堆空间,会导致其他线程也出现堆溢出,最终导致JVM关闭
Java 虚拟机所管理的内存中最大的一块,Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。
Java世界中“几乎”所有的对象都在堆中分配,但是,随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。从jdk 1.7开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。
六、方法区
⽅法区与 Java 堆⼀样,是各个线程共享的内存区域,它⽤于存储已被虚拟机加载的类信息、常量、静
态变量、即时编译器编译后的代码等数据。
七、运行时常量池
运⾏时常量池是⽅法区的⼀部分。 Class ⽂件中除了有类的版本、字段、⽅法、接口等描述信息外,还
有常量池信息(⽤于存放编译期⽣成的各种字⾯量和符号引⽤)
既然运行时常量池时方法区的⼀部分,自然受到⽅法区内存的限制,当常量池无法再申请到内存时会抛
出 OutOfMemoryError 异常。
- JDK1.7之前运行时常量池逻辑包含字符串常量池存放在方法区, 此时hotspot虚拟机对方法区的实现为永久代
- JDK1.7 字符串常量池被从方法区拿到了堆中, 这里没有提到运行时常量池,也就是说字符串常量池被单独拿到堆,运行时常量池剩下的东西还在方法区, 也就是hotspot中的永久代 。
- JDK1.8 hotspot移除了永久代用元空间(Metaspace)取而代之, 这时候字符串常量池还在堆, 运行时常量池还在方法区, 只不过方法区的实现从永久代变成了元空间(Metaspace)
八、直接内存
直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。
JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel) 与缓存区(Buffer) 的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据。
本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。