一、题目描述:
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
二、解题思路 & 代码
2.1 递归
思路
对于任意一颗树而言,前序遍历的形式总是
[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]
即根节点总是前序遍历中的第一个节点。而中序遍历的形式总是
[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]
只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。
这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。
细节
在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。我们可以考虑使用哈希映射(HashMap
)来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要 O(1) 的时间对根节点进行定位了。
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
def myBuildTree(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int):
if preorder_left > preorder_right:
return None
# 前序遍历中的第一个节点就是根节点
preorder_root = preorder_left
# 在中序遍历中定位根节点
inorder_root = index[preorder[preorder_root]]
# 先把根节点建立出来
root = TreeNode(preorder[preorder_root])
# 得到左子树中的节点数目
size_left_subtree = inorder_root - inorder_left
# 递归地构造左子树,并连接到根节点
# 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
root.left = myBuildTree(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1)
# 递归地构造右子树,并连接到根节点
# 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
root.right = myBuildTree(preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right)
return root
n = len(preorder)
# 构造哈希映射,帮助我们快速定位根节点
index = {
element: i for i, element in enumerate(inorder)}
return myBuildTree(0, n - 1, 0, n - 1)
复杂度分析
-
时间复杂度:
O(n)
,其中 n 是树中的节点个数。 -
空间复杂度:
O(n)
,除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O(n)。
2.2 递归简洁版
通过先序遍历我们可以找到root,根据root我们可以再中序找到当前root对应的左右子树,再递归对当前root的左右子树进行构造(递归的时候别想多,把看到的一堆想成一个整体就好,想好递归终止条件,剩下的让程序去做吧,不然容易把自己陷入死循环弄得一头雾水)。
本题也是一样,知道inorder中,当前root的左侧的所有点就是其左子树,root的右侧的所有点就是当前root的右子树,就把这左右两堆数字想成当前root的左右2个节点就好,然后扔到函数里进行下一层的递归。
inorder.index(preorder[0])
这一步获取根的索引值,题目说树中的各个节点的值都不相同,也确保了这步得到的结果是唯一准确的。而且这个idx还能当长度用相当于 左+根
的长度,因为 左+根 和 根+左 是等长的。
为了方便理解,可配合下图一起食用可以更好的而理解代码倒数2-3行(只是以最外面的一层调用为例子)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if not preorder or not inorder: # 递归终止条件
return
root = TreeNode(preorder[0]) # 先序为“根左右”,所以根据preorder可以确定root
idx = inorder.index(preorder[0]) # 中序为“左根右”,根据root可以划分出左右子树
# 下面递归对root的左右子树求解即可
root.left = self.buildTree(preorder[1:1 + idx], inorder[:idx])
root.right = self.buildTree(preorder[1 + idx:], inorder[idx + 1:])
return root
2.3 迭代
算法
-
我们用一个栈和一个指针辅助进行二叉树的构造。初始时栈中存放了根节点(前序遍历的第一个节点),指针指向中序遍历的第一个节点;
-
我们依次枚举前序遍历中除了第一个节点以外的每个节点。如果 index 恰好指向栈顶节点,那么我们不断地弹出栈顶节点并向右移动 index,并将当前节点作为最后一个弹出的节点的右儿子;如果 index 和栈顶节点不同,我们将当前节点作为栈顶节点的左儿子;
-
无论是哪一种情况,我们最后都将当前的节点入栈。
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if not preorder:
return None
root = TreeNode(preorder[0])
stack = [root]
inorderIndex = 0
for i in range(1, len(preorder)):
preorderVal = preorder[i]
node = stack[-1]
if node.val != inorder[inorderIndex]:
node.left = TreeNode(preorderVal)
stack.append(node.left)
else:
while stack and stack[-1].val == inorder[inorderIndex]:
node = stack.pop()
inorderIndex += 1
node.right = TreeNode(preorderVal)
stack.append(node.right)
return root
复杂度分析
-
时间复杂度:O(n),其中 nn 是树中的节点个数。
-
空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(h)(其中 h 是树的高度)的空间存储栈。这里 h < n,所以(在最坏情况下)总空间复杂度为 O(n)。