LeetCode 1091. Shortest Path in Binary Matrix二进制矩阵中的最短路径【Medium】【Python】【BFS】
Problem
In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k
if and only if it is composed of cells C_1, C_2, ..., C_k
such that:
- Adjacent cells
C_i
andC_{i+1}
are connected 8-directionally (ie., they are different and share an edge or corner) C_1
is at location(0, 0)
(ie. has valuegrid[0][0]
)C_k
is at location(N-1, N-1)
(ie. has valuegrid[N-1][N-1]
)- If
C_i
is located at(r, c)
, thengrid[r][c]
is empty (ie.grid[r][c] == 0
).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]] Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]] Output: 4
Note:
1 <= grid.length == grid[0].length <= 100
grid[r][c]
is0
or1
问题
在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。
一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k
组成:
相邻单元格 C_i
和 C_{i+1}
在八个方向之一上连通(此时,C_i
和 C_{i+1}
不同且共享边或角)
C_1
位于(0, 0)
(即,值为grid[0][0]
)C_k
位于(N-1, N-1)
(即,值为grid[N-1][N-1]
)如果
C_i
位于(r, c)
,则grid[r][c]
为空(即,grid[r][c] == 0
)返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。
示例 1:
输入:[[0,1],[1,0]] 输出:2
示例 2:
输入:[[0,0,0],[1,1,0],[1,1,0]] 输出:4
提示:
1 <= grid.length == grid[0].length <= 100
grid[i][j]
为0
或1
思路
BFS
最短路径问题,可以使用 BFS 来解。 在队列中直接添加路径长度 cnt 即可。
BFS模板
void BFS(){ 判断边界条件,是否能直接返回结果的。 定义队列; 定义备忘录,用于记录已经访问的位置; 将起始位置加入到队列中,同时更新备忘录。 while (队列不为空){ 获取当前队列中的元素个数。 判断是否到达终点位置。 for (元素个数){ 取出一个位置节点。 判断是否到达终点位置。 获取它对应的下一个所有的节点。 条件判断,过滤掉不符合条件的位置。 新位置重新加入队列。 } } }
时间复杂度: O(N^2)
空间复杂度: O(N^2)
Python3代码
class Solution: def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int: if grid[0][0] == 1 or grid[-1][-1] == 1: # top-left is not empty or bottom-right is not empty return -1 # eight directions: → ← ↓ ↑ ↗ ↙ ↖ ↘ directions = [[1, 0], [-1, 0], [0, -1], [0, 1], [1, 1], [1, -1], [-1, 1], [-1, -1]] queue = [(0, 0, 1)] # location, cnt n = len(grid) # BFS while len(queue): x0, y0, cnt = queue.pop(0) # pop (location, cnt) if x0 == n - 1 and y0 == n - 1: # already arrive at bottom-right return cnt # eight directions for i, j in directions: x, y = x0 + i, y0 + j # (x, y) is in the grid and grid[x][y] = 0, also means: grid[x][y] is not visited if 0 <= x < n and 0 <= y < n and not grid[x][y]: queue.append((x, y, cnt + 1)) grid[x][y] = 1 # visited return -1