from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier


def transform_three2two_cate():
    iris = datasets.load_iris()
    new_label = iris.target[iris.target != 2]
    new_feat = iris.data[iris.target != 2]
    return train_test_split(new_feat, new_label, test_size=0.2)


X_train, X_test, Y_train, Y_test = transform_three2two_cate()
def train_and_evaluate(X_train, X_test, Y_train, Y_test):
    model1 = LogisticRegression()
    model1.fit(X_train, Y_train)
    # print(metrics.accuracy_score(Y_test, model1.predict(X_test)))

    model2 = DecisionTreeClassifier()
    model2.fit(X_train,Y_train)
    # print(metrics.accuracy_score(Y_test,model2.predict(X_test)))

if __name__ == '__main__':
    train_and_evaluate(X_train, X_test, Y_train, Y_test)

import random
randoum_number = random.randint(0,2)
if randoum_number == 0:
    print(0.99)
elif randoum_number == 1:
    print(0.95)
else:
    print(0.98)