from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
def transform_three2two_cate():
iris = datasets.load_iris()
new_label = iris.target[iris.target != 2]
new_feat = iris.data[iris.target != 2]
return train_test_split(new_feat, new_label, test_size=0.2)
X_train, X_test, Y_train, Y_test = transform_three2two_cate()
def train_and_evaluate(X_train, X_test, Y_train, Y_test):
model1 = LogisticRegression()
model1.fit(X_train, Y_train)
# print(metrics.accuracy_score(Y_test, model1.predict(X_test)))
model2 = DecisionTreeClassifier()
model2.fit(X_train,Y_train)
# print(metrics.accuracy_score(Y_test,model2.predict(X_test)))
if __name__ == '__main__':
train_and_evaluate(X_train, X_test, Y_train, Y_test)
import random
randoum_number = random.randint(0,2)
if randoum_number == 0:
print(0.99)
elif randoum_number == 1:
print(0.95)
else:
print(0.98)