1. 散点图使用scatter

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt


# 生成3D示例数据

mu_vec1 = np.array([0,0,0]) # 均值向量
cov_mat1 = np.array([[1,0,0],[0,1,0],[0,0,1]]) # 协方差矩阵

class1_sample = np.random.multivariate_normal(mu_vec1, cov_mat1, 20)
class2_sample = np.random.multivariate_normal(mu_vec1 + 1, cov_mat1, 20)
class3_sample = np.random.multivariate_normal(mu_vec1 + 2, cov_mat1, 20)


# class1_sample.shape -> (20, 3), 20 rows, 3 columns


fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(class1_sample[:,0], class1_sample[:,1], class1_sample[:,2],
           marker='x', color='blue', s=40, label='class 1')
ax.scatter(class2_sample[:,0], class2_sample[:,1], class2_sample[:,2],
           marker='o', color='green', s=40, label='class 2')
ax.scatter(class3_sample[:,0], class3_sample[:,1], class3_sample[:,2],
           marker='^', color='red', s=40, label='class 3')

ax.set_xlabel('variable X')
ax.set_ylabel('variable Y')
ax.set_zlabel('variable Z')

plt.title('3D Scatter Plot')

plt.show()
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

这里写图片描述

  • 直线使用plot3D

  • from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    from itertools import product, combinations
    fig = plt.figure(figsize=(7,7))
    ax = fig.gca(projection='3d')
    ax.set_aspect("equal")
    
    
    # 画点
    
    
    
    # 立方体里的点
    
    X_inside = np.array([[0,0,0],[0.2,0.2,0.2],[0.1, -0.1, -0.3]])
    
    X_outside = np.array([[-1.2,0.3,-0.3],[0.8,-0.82,-0.9],[1, 0.6, -0.7], [0.8,0.7,0.2],[0.7,-0.8,-0.45],[-0.3, 0.6, 0.9], [0.7,-0.6,-0.8]])
    
    for row in X_inside:
        ax.scatter(row[0], row[1], row[2], color="r", s=50, marker='^')
    
    for row in X_outside:
        ax.scatter(row[0], row[1], row[2], color="k", s=50)
    
    
    # 画立方体
    
    h = [-0.5, 0.5]
    for s, e in combinations(np.array(list(product(h,h,h))), 2):
        if np.sum(np.abs(s-e)) == h[1]-h[0]:
            ax.plot3D(*zip(s,e), color="g")
    
    ax.set_xlim(-1.5, 1.5)
    ax.set_ylim(-1.5, 1.5)
    ax.set_zlim(-1.5, 1.5)
    
    plt.show()
     
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    这里写图片描述