Description
今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party。 hidadz带着朋友们来到花园中,打算
坐成一排玩游戏。为了游戏不至于无聊,就座的方案应满足如下条件:对于任意连续的一段,男孩与女孩的数目之
差不超过k。很快,小朋友便找到了一种方案坐了下来开始游戏。hidadz的好朋友Susie发现,这样的就座方案其实
是很多的,所以大家很快就找到了一种,那么到底有多少种呢?热爱数学的hidadz和她的朋友们开始思考这个问题
…… 假设参加party的人***有n个男孩与m个女孩,你是否能解答Susie和hidadz的疑问呢?由于这个数目可能很
多,他们只想知道这个数目除以12345678的余数。
Input
仅包含一行共3个整数,分别为男孩数目n,女孩数目m,常数k。
Output
应包含一行,为题中要求的答案。
Sample Input
1 2 1
Sample Output
1
HINT
n , m ≤ 150,k ≤ 20。
解题方法:
这是一个不是很好想的 DP 问题。定义状态 dp[a][b][c][d]表示前 a 个人中有 b 个人是男生,其中男生最多比
女生多 c 个,女生最多比男生多 d 个的方案数。则我们可以用 dp[a][b][c][d]去更新 dp[a+1][b+1][c+1][max(d
-1),0]以及 dp[a+1][b][max(c-1,0)][d+1],其中需要满足 c+1≤p,d+1≤p,p 是题目中输入的第三个整数,
边界条件是 dp[1][1][1][0]=dp[1][0][0][1]=1。答案是Σdp[n+m][n][i][j]。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int f[302][160][21][21];
const int mod = 12345678;
int n, m, k;
int main(){
scanf("%d%d%d", &n,&m,&k);
f[1][1][1][0] = f[1][0][0][1] = 1;
for(int i = 0;i < n + m; i++){
for(int j = 0; j <= n; j++){
for(int x = 0; x <= k; x++){
for(int y = 0; y <= k; y++){
if(f[i][j][x][y]){
if(x+1<=k&&j+1<=n){
f[i+1][j+1][x+1][max(y-1,0)] += f[i][j][x][y];
f[i+1][j+1][x+1][max(y-1,0)] %= mod;
}
if(y+1<=k&&i+1-j<=m){
f[i+1][j][max(x-1,0)][y+1] += f[i][j][x][y];
f[i+1][j][max(x-1,0)][y+1] %= mod;
}
}
}
}
}
}
int ans = 0;
for(int i = 0; i <= n; i++){
for(int x = 0; x <= k; x++){
for(int y = 0; y <= k; y++){
ans += f[n+m][i][x][y];
ans %= mod;
}
}
}
printf("%d\n", ans);
return 0;
}