ABC 165 D - Floor Function

Question

f ( x ) = f l o o r ( A x / B ) A × f l o o r ( x / B ) f(x)=floor(Ax/B) - A × floor(x/B) f(x)=floor(Ax/B)A×floor(x/B)
x n x\le n xn使得 f ( x ) m a x f(x)_{max} f(x)max f ( x ) m a x f(x)_{max} f(x)max

Solution

  1. 三分法。当时打的时候盲猜这是一个先递增后递减的函数,故可以采用三分法。然而实际上这是一个关于B为周期的函数,并不满足严格三分的条件。问了下大佬,说随机数据的情况下,刚好被周期卡住的概率很小,所以能过。我感觉这个虽然具有周期性,但是会往同一个周期收敛,虽然在不同周期但是可以看做同一个周期。(我口胡瞎说的,不会严格证明,就直觉吧?)
  2. f ( x ) = f ( x + B ) f(x)=f(x+B) f(x)=f(x+B),且在 x [ 0 , B 1 ] x\in[0,B-1] x[0,B1] f ( x ) f(x) f(x)单调递增。
    证明:设 x <mtext>   </mtext> m o d <mtext>   </mtext> B = t x ~mod~ B=t x mod B=t x B = k \lfloor \frac{x}{B}\rfloor=k Bx=k A x B = A k + A t B \lfloor \frac{Ax}{B}\rfloor=Ak+\lfloor \frac{At}{B}\rfloor BAx=Ak+BAt,故 f ( x ) = A t B f(x)=\lfloor \frac{At}{B}\rfloor f(x)=BAt,显然 f ( x ) f(x) f(x) t [ 0 , B 1 ] t\in[0,B-1] t[0,B1]上单调递增,故 x = m i n ( B 1 , n ) x=min(B-1,n) x=min(B1,n)为最佳选择。

Code1.1

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const double eps = 1e-8;
const int NINF = 0xc0c0c0c0;
const int INF  = 0x3f3f3f3f;
const ll  mod  = 1e9 + 7;
const ll  maxn = 1e6 + 5;

ll a,b,n;

ll check(ll x){
	return (a*x)/b-a*(x/b);
}

int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>a>>b>>n;
	ll L=1,R=n;
	while(R>L){
		ll m1=L+(R-L)/3;
		ll m2=R-(R-L)/3;
		if(check(m1)>check(m2))
			R=m2-1;
		else
			L=m1+1;
	}
	cout<<check(L)<<'\n';
	return 0;
}

Code1.2

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const double eps = 1e-8;
const int NINF = 0xc0c0c0c0;
const int INF  = 0x3f3f3f3f;
const ll  mod  = 1e9 + 7;
const ll  maxn = 1e6 + 5;

ll a,b,n;

ll check(ll x){return (a*x)/b-a*(x/b);}

int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>a>>b>>n;
	ll L=1,R=n;
	while(R-L>10){
		ll m1=L+(R-L)/3;
		ll m2=R-(R-L)/3;
		if(check(m1)>check(m2))
			R=m2-1;
		else
			L=m1+1;
	}
	ll mx=0;
	for(ll i=L;i<=min(n,R);i++){
		if(check(i)>mx){
			mx=check(i);
		}
	}
	cout<<mx<<'\n';
	return 0;
}

Code2

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const double eps = 1e-8;
const int NINF = 0xc0c0c0c0;
const int INF  = 0x3f3f3f3f;
const ll  mod  = 1e9 + 7;
const ll  maxn = 1e6 + 5;

int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	ll a, b, n;
	cin>>a>>b>>n;
	n=min(n, b-1);
	cout<<a*n/b<<endl;
	return 0;
}