最小费用最大流,对数乘法换加法,浮点数比较
题意:
这道题看上去很裸,似乎就是一道最小费用流的题目。
需要注意的有三点:
1.这里面最小费用的计算是乘法,所以我们要对其取对数将其变为加法。
2.因为e(u,v)的cost为浮点数,所以再spfa算法中我们便不能再直接比较了。需要加上个eps否则会一直超时的。
3.我们注意到第一次走的时候不会产生费用,那么我们直接在该建边的两点间再建一条费用为零,容量为一的边就好了。
前两个雷我都踩了。。。。。。
代码如下:
#include<iostream> #include<math.h> #include<queue> #include<iomanip> using namespace std; typedef pair<int, int> pii; const double eps = 1e-9; const double inf = 2e9; const int max_n = 120; const int max_m = 5500; int n, m; struct edge { int to, cap, rev, next; double cost; }E[max_m * 4]; int head[max_n]; int cnt = 1; void add(int from, int to, int cap, double cost) { E[cnt].to = to;E[cnt].cap = cap; E[cnt].cost = cost;E[cnt].rev = cnt + 1; E[cnt].next = head[from];head[from] = cnt++; E[cnt].to = from;E[cnt].cap = 0; E[cnt].cost = -cost;E[cnt].rev = cnt - 1; E[cnt].next = head[to];head[to] = cnt++; } double dist[max_n]; bool used[max_n]; pii fa[max_n]; bool spfa(int s, int t) { fill(dist, dist + max_n, inf); fill(used, used + max_n, false); dist[s] = 0;used[s] = true; queue<int> que;que.push(s); while (!que.empty()) { int u = que.front();que.pop(); used[u] = false; for (int i = head[u];i;i = E[i].next) { edge& e = E[i]; if (e.cap <= 0 || dist[e.to] <= dist[u] + e.cost)continue; dist[e.to] = dist[u] + e.cost; fa[e.to] = { u,i }; if (used[e.to]) continue; que.push(e.to); used[e.to] = true; } }return dist[t] != inf; }double matchpath(int s, int t, int& f) { int d = f;double res = 0; for (int cur = t;cur != s;cur = fa[cur].first) { edge& e = E[fa[cur].second]; d = min(d, e.cap); } f -= d;res += d * dist[t]; for (int cur = t;cur != s;cur = fa[cur].first) { edge& e = E[fa[cur].second]; e.cap -= d;E[e.rev].cap += d; } return res; } double mcf(int s, int t, int f) { double res = 0;double cost = 0; while (f > 0 && spfa(s, t)) { cost = matchpath(s, t, f); res += cost; }return res; } int init() { fill(head, head + max_n, false); cnt = 1;int res = 0; int start = n + 1;int ed = start + 1; for (int i = 1;i <= n;i++) { int s, b;cin >> s >> b;res += s; if (s != 0) add(start, i, s, 0); if (b != 0) add(i, ed, b, 0); }for (int i = 1;i <= m;i++) { int u, v, c;double p; cin >> u >> v >> c >> p; if (c <= 0)continue; add(u, v, 1, 0); add(u, v, c - 1, -log2(1 - p)); }return res; } int main() { ios::sync_with_stdio(0); int T;cin >> T; while (T-- && (cin >> n >> m)) cout << fixed << setprecision(2) << 1.0 - pow(2, -mcf(n + 1, n + 2, init())) << endl; }