可以先离散化,然后开线段树维护。我们对于栈的查找操作可以理解成找到插入的时间点,然后再找到对应的元素。
对于插入和删除操作,可以认为是在指定时间以后+1或者-1。对于查询操作,我们首先可以确定对应时间栈内元素个数,然后用线段树查询在当前时间之前最后一个小于这个个数的时间点t,t+1就是插入的时间。
整体复杂度O(n log(n))
#include <bits/stdc++.h>
using namespace std;
#define ls (rt << 1)
#define rs (rt << 1 | 1)
const int maxn = 2e5 + 10;
struct Node
{
int lb, rb;
}Tree[maxn << 2];
struct Query
{
int op, t, v;
}ask[maxn];
int n, b[maxn], val[maxn];
void pushup(Node & x, const Node & l, const Node & r)
{
if(l.rb <= r.lb)
{
x.lb = l.lb + r.lb - l.rb;
x.rb = r.rb;
}
else
{
x.lb = l.lb;
x.rb = l.rb + r.rb - r.lb;
}
}
void update(int rt, int l, int r, int x, bool typ)
{
if(l == r)
{
if(typ)
Tree[rt].lb = 1;
else
Tree[rt].rb = 1;
return;
}
int mid = l + r >> 1;
if(x <= mid) update(ls, l, mid, x, typ);
else update(rs, mid + 1, r, x, typ);
pushup(Tree[rt], Tree[ls], Tree[rs]);
}
Node query(int rt, int l, int r, int a, int b)
{
if(a <= l && r <= b) return Tree[rt];
int mid = l + r >> 1;
if(b <= mid) return query(ls, l, mid, a, b);
if(a > mid) return query(rs, mid + 1, r, a, b);
Node ret;
pushup(ret, query(ls, l, mid, a, b), query(rs, mid + 1, r, a, b));
return ret;
}
int solve(int rt, int l, int r, int a, int b, int x)
{
if(l == r) return val[l];
int mid = l + r >> 1;
if(b <= mid) return solve(ls, l, mid, a, b, x);
if(a > mid) return solve(rs, mid + 1, r, a, b, x);
Node tmp = query(rs, mid + 1, r, mid + 1, b);
if(tmp.rb >= x) return solve(rs, mid + 1, r, a, b, x);
else return solve(ls, l, mid, a, b, x + tmp.lb - tmp.rb);
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
{
scanf("%d%d", &ask[i].op, &ask[i].t);
if(ask[i].op == 0) scanf("%d", &ask[i].v);
b[i] = ask[i].t;
}
sort(b + 1, b + n + 1);
for(int i = 1; i <= n; ++i)
{
ask[i].t = lower_bound(b + 1, b + n + 1, ask[i].t) - b;
if(ask[i].op == 0)
{
val[ask[i].t] = ask[i].v;
update(1, 1, n, ask[i].t, 0);
}
else if(ask[i].op == 1)
update(1, 1, n, ask[i].t, 1);
else
printf("%d\n", solve(1, 1, n, 1, ask[i].t, 1));
}
return 0;
}
京公网安备 11010502036488号