可以先离散化,然后开线段树维护。我们对于栈的查找操作可以理解成找到插入的时间点,然后再找到对应的元素。
对于插入和删除操作,可以认为是在指定时间以后+1或者-1。对于查询操作,我们首先可以确定对应时间栈内元素个数,然后用线段树查询在当前时间之前最后一个小于这个个数的时间点t,t+1就是插入的时间。
整体复杂度O(n log(n))
#include <bits/stdc++.h> using namespace std; #define ls (rt << 1) #define rs (rt << 1 | 1) const int maxn = 2e5 + 10; struct Node { int lb, rb; }Tree[maxn << 2]; struct Query { int op, t, v; }ask[maxn]; int n, b[maxn], val[maxn]; void pushup(Node & x, const Node & l, const Node & r) { if(l.rb <= r.lb) { x.lb = l.lb + r.lb - l.rb; x.rb = r.rb; } else { x.lb = l.lb; x.rb = l.rb + r.rb - r.lb; } } void update(int rt, int l, int r, int x, bool typ) { if(l == r) { if(typ) Tree[rt].lb = 1; else Tree[rt].rb = 1; return; } int mid = l + r >> 1; if(x <= mid) update(ls, l, mid, x, typ); else update(rs, mid + 1, r, x, typ); pushup(Tree[rt], Tree[ls], Tree[rs]); } Node query(int rt, int l, int r, int a, int b) { if(a <= l && r <= b) return Tree[rt]; int mid = l + r >> 1; if(b <= mid) return query(ls, l, mid, a, b); if(a > mid) return query(rs, mid + 1, r, a, b); Node ret; pushup(ret, query(ls, l, mid, a, b), query(rs, mid + 1, r, a, b)); return ret; } int solve(int rt, int l, int r, int a, int b, int x) { if(l == r) return val[l]; int mid = l + r >> 1; if(b <= mid) return solve(ls, l, mid, a, b, x); if(a > mid) return solve(rs, mid + 1, r, a, b, x); Node tmp = query(rs, mid + 1, r, mid + 1, b); if(tmp.rb >= x) return solve(rs, mid + 1, r, a, b, x); else return solve(ls, l, mid, a, b, x + tmp.lb - tmp.rb); } int main() { scanf("%d", &n); for(int i = 1; i <= n; ++i) { scanf("%d%d", &ask[i].op, &ask[i].t); if(ask[i].op == 0) scanf("%d", &ask[i].v); b[i] = ask[i].t; } sort(b + 1, b + n + 1); for(int i = 1; i <= n; ++i) { ask[i].t = lower_bound(b + 1, b + n + 1, ask[i].t) - b; if(ask[i].op == 0) { val[ask[i].t] = ask[i].v; update(1, 1, n, ask[i].t, 0); } else if(ask[i].op == 1) update(1, 1, n, ask[i].t, 1); else printf("%d\n", solve(1, 1, n, 1, ask[i].t, 1)); } return 0; }